Broadcast Electronics

4100 North 24th Street, Quincy, Illinois 62305 USA • Phone (217) 224-9600 • Fax (217) 224-9607 • www.bdcast.com • bdcast@bdcast.com

STXe 5 5 kW FM Transmitter Technical Manual

597-xxxx Preliminary May 30, 2023

STXe 5 - 5 kW FM Transmitters Technical Manual

©2023 Broadcast Electronics all rights reserved.

The information in this publication is subject to improvement and change without notice. Although every effort is made to ensure the accuracy of the information in this manual, Broadcast Electronics accepts no responsibility for any errors or omissions. Broadcast Electronics reserves the right to modify and improve the design and specifications of the equipment in this manual without notice. Any modifications shall not adversely affect performance of the equipment so modified.

Proprietary Notice

This document contains proprietary data of Broadcast Electronics. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, translated into any other language in any form or by any means, electronic or mechanical, including photocopying or recording, for any purpose, without the express written permission of Broadcast Electronics.

Trademarks

Broadcast Electronics and the BE logo are registered trademarks of Broadcast Electronics. Marti Electronics and the Marti logo are registered trademarks of Broadcast Electronics. All other trademarks are property of their respective owners.

Copyright

Copyright laws protect artwork depicting circuitry in this manual.

Information in this manual is subject to change without notice and does not represent a commitment on the part of Broadcast Electronics.

Broadcast Electronics may make improvements and/or changes in this manual or in the product described herein at any time.

This product could include technical inaccuracies or typographical errors.

Broadcast Electronics Product Warranty

Broadcast Electronics hereby warrants all new products manufactured by Broadcast Electronics against any defects in material or workmanship at the time of delivery thereof, or that develop under normal use within the period from the date of shipment.

Broadcast Electronics reserves the right to repair equipment under warranty with new or refurbished equipment or parts. Broadcast Electronics' sole responsibility, with respect to any equipment or parts not conforming to this warranty, is to replace or repair such equipment upon the return thereof F.O.B. to Broadcast Electronics' factory in Quincy, Illinois, U.S.A. In the event of replacement pursuant to the foregoing warranty, only the unexpired portion of the warranty from the time of the original purchase will remain in effect for any such replacement.

This warranty shall exclude the following products, component parts and/or assemblies:

(a) Transmitter power output tubes shall only carry the original manufacturers' or suppliers' standard warranty in effect on their original shipment date.

(b) All computers, computer peripherals, cables, hard disk drives, etc., shall only carry the manufacturers' or suppliers' standard warranty in effect on their original shipment date.

(c) "Components", defined as separate and individual parts (e.g. transistors, integrated circuits, capacitors, resistors, inductors, fans, etc.), resold by Broadcast Electronics from another manufacturer or supplier, shall only carry a 90-day warranty, effective the date of shipment. Any such "Components" being returned for warranty claim must be (1) returned in their original packaging and (2) must be in new, unused condition. Broadcast Electronics is unable to process or resolve component defects or performance concerns on components that have been soldered, installed, wired or in any way altered from their new condition.

(d) "Resale Equipment", defined as equipment purchased from another manufacturer or supplier, then resold by Broadcast Electronics, shall only carry such manufacturer's or suppliers' standard warranty in effect as of the original shipment date. All warranty claims against any and all "resale equipment" sold by Broadcast Electronics must be filed directly with the original equipment manufacturer. Broadcast Electronics is unable to process or resolve equipment defects or performance concerns on products or services not manufactured by Broadcast Electronics.

This warranty shall not extend to claims resulting from any acts of God, terrorism, war, defects or failures caused by Purchaser or user abuse or misuse, operator error, or unauthorized attempts to repair or alter the equipment in any way.

Under no circumstances shall Broadcast Electronics be responsible for indirect, incidental or consequential damages, including, but not limited to transportation costs, non-authorized repair or service costs, downtime costs, costs for substituting equipment or loss of anticipated profits or revenue incurred by Purchaser, whether based in contract, tort or for negligence or breach of statutory duty or otherwise. The terms of the foregoing warranty shall be null and void if the equipment has been altered or repaired without specific written authorization from Broadcast Electronics, or if not installed according to Broadcast Electronics' instruction manuals, including, but not limited to, the absence of proper grounding, surge (TVSS) protection on the AC circuit panel or proper lightning protection/grounding on all output circuits, or if equipment is operated under environmental conditions or circumstances other than those specifically described in Broadcast Electronics' product literature or instruction manual which accompany the equipment. The warranty shall be voided if the product or subassembly is equipped with a tamper seal and that tamper seal is broken. Broadcast Electronics shall not be liable for any expense of any nature whatsoever incurred

this warranty. If the equipment is described as "used" equipment, it is sold as is and where is and no warranty applies unless authorized in writing.

EXCEPT AS SET FORTH HEREIN, AS TO TITLE AND AS SPECIFICALLY REQUIRED BY LAW, THERE ARE NO OTHER WARRANTIES, OR ANY AFFIRMATIONS OF FACT OR PROMISES BY BROADCAST ELECTRONICS, WITH REFERENCE TO THE EQUIPMENT, OR TO MERCHANTABILITY, FITNESS FOR A PARTICULAR APPLICATION, SIGNAL COVERAGE, INFRINGEMENT, OR OTHERWISE, WHICH EXTEND BEYOND THE DESCRIPTION OF THE EQUIPMENT ON THE FACE HEREOF.

IMPORTANT INFORMATION

EQUIPMENT LOST OR DAMAGED IN TRANSIT

When delivering the equipment to you, the truck driver or carriers' agent will present a receipt for your signature. Do not sign it until you have:

1) Inspected the containers for visible signs of damage and

2) Counted the containers and compared with the amount shown on the shipping papers. If a shortage or evidence of damage is noted, insist that notation to that effect be made on the shipping papers before you sign them.

Further, after receiving the equipment, unpack it and inspect thoroughly for concealed damage. If concealed damage is discovered, immediately notify the carrier, confirming the notification in writing, and secure an inspection report. This item should be unpacked and inspected for damage WITHIN 15 DAYS after receipt. Claims for loss or damage will not be honored without proper notification of inspection by the carrier.

RF PRODUCT TECHNICAL ASSISTANCE, REPAIR SERVICE, PARTS -

Technical assistance is available from Broadcast Electronics by letter, prepaid telephone or E-mail. Do not return any merchandise without first contacting Broadcast Electronics and receiving prior written approval and a Return Authorization. We will provide special shipping instructions and a code number that will assure proper handling and prompt issuance of credit. Please furnish complete details as to the circumstances and reasons when requesting return of merchandise. Equipment requiring repair or overhaul should be sent by common carrier, prepaid, insured, and well protected. If proper shipping materials are not available, contact the RF Technical Services department for a shipping container. We can assume no liability for inbound damage, and necessary repairs become the obligation of the shipper. All returned merchandise must be sent freight prepaid and properly insured by the customer

Emergency and warranty replacement parts may be ordered from the following address. Be sure to include the equipment model number, serial number, part description, and part number. Non-emergency replacement parts may be ordered directly from the Broadcast Electronics stock room (see next page.)

RF TECHNICAL SERVICES

Telephone: +1 (217) 224-9617 E-Mail: <u>rfservice@bdcast.com</u> Fax: +1 (217) 224-6258

FACILITY CONTACTS

Broadcast Electronics, - Quincy Facility 4100 N. 24th St. P.O. BOX 3606 Quincy, Illinois 62305 Telephone: +1 (217) 224-9600 Fax: +1 (217) 224-6258 General E-Mail: bdcast@bdcast.com Web Site: www.bdcast.com

PARTS

Telephone: +1 (217) 224-9617 E-Mail: <u>parts@bdcast.com</u>

RETURN, REPAIR, AND EXCHANGES

Do not return any merchandise without our written approval and Return Authorization. We will provide special shipping instructions and a code number that will assure proper handling and prompt issuance of credit. Please furnish complete details as to circumstances and reasons when requesting return of merchandise. All returned merchandise must be sent freight prepaid and properly insured by the customer.

MODIFICATIONS

Broadcast Electronics, reserves the right to modify the design and specifications of the equipment in this manual without notice. Any modifications shall not adversely affect performance of the equipment so modified.

SAFETY PRECAUTIONS

PLEASE READ AND OBSERVE ALL SAFETY PRECAUTIONS

ALL PERSONS WHO WORK WITH OR ARE EXPOSED TO POWER TUBES, POWER TRANSISTORS, OR EQUIPMENT THAT UTILIZES SUCH DEVICES MUST TAKE PRECAUTIONS TO PROTECT THEMSELVES AGAINST POSSIBLE SERIOUS BODILY INJURY. EXERCISE EXTREME CARE AROUND SUCH PRODUCTS. UNINFORMED OR CARELESS OPERATION OF THESE DEVICES CAN RESULT IN POOR PERFORMANCE, DAMAGE TO THE DEVICE OR PROPERTY, SERIOUS BODILY INJURY, AND POSSIBLY DEATH!!

DANGEROUS HAZARDS EXIST IN THE OPERATION OF POWER TUBES AND POWER TRANSISTORS

The operation of power tubes and power transistors involves one or more of the following hazards, any one of which, in the absence of safe operating practices and precautions, could result in serious harm to personnel.

- **A. HIGH VOLTAGE -** Normal operating voltages can be deadly. Additional information follows.
- **B. RF RADIATION -** Exposure to RF radiation may cause serious bodily injury possibly resulting in Blindness or death. Cardiac pacemakers may be affected. Additional information follows.
- **C. HOT SURFACES -** Surfaces of air-cooled radiators and other parts of tubes can reach temperatures of several hundred degrees centigrade and cause serious burns if touched. Additional information follows.
- **D. RF BURNS -** Circuit boards with RF power transistors contain high RF potentials. Do not operate an RF power module with the cover removed.

HIGH VOLTAGE

Personnel should always break the primary AC Power when accessing the inside of the transmitter. Mains voltage is high enough to kill through electrocution.

v

RADIO FREQUENCY RADIATION

Exposure of personnel to RF radiation should be minimized, personnel should not be permitted in the vicinity of open energized RF generating circuits, or RF transmission systems (waveguides, cables, connectors, etc.), or energized antennas. It is generally accepted that exposure to "high levels" of radiation can result in severe bodily injury including blindness. Cardiac pacemakers may be affected.

The effect of prolonged exposure to "low level" RF radiation continues to be a subject of investigation and controversy. It is generally agreed that prolonged exposure of personnel to RF radiation should be limited to an absolute minimum. It is also generally agreed that exposure should be reduced in working areas where personnel heat load is above normal. A 10 mW/cm² per one tenth hour average level has been adopted by several U.S. Government agencies including the Occupational Safety and Health Administration (OSHA) as the standard protection guide for employee work environments. An even stricter standard is recommended by the American National Standards Institute which recommends a 1.0 mW/cm² per one tenth hour average level exposure between 30 Hz and 300 MHz as the standard employee protection guide (ANSI C95.1-1982).

RF energy must be contained properly by shielding and transmission lines. All input and output RF connections, such as cables, flanges and gaskets must be RF leak proof. Never operate a power tube without a properly matched RF energy absorbing load attached. Never look into or expose any part of the body to an antenna or open RF generating tube or circuit or RF transmission system while energized. Monitor the tube and RF system for RF radiation leakage at regular intervals and after servicing.

HOT SURFACES

The power components in the transmitter are cooled by forced-air and natural convection. When handling any components of the transmitter after it has been in operation, caution must always be taken to ensure that the component is cool enough to handle without injury.

Table of Contents

1	Specif	fications	11
2	Instal	lation & Introduction	13
	2.1	Overview of Major Assemblies Front View	13
	2.2	Installation	16
3	Initial	Turn On	22
	3.1	Turn on AC	22
	3.2	Set Time and Date	22
	3.3	Frequency	23
	3.4	100% peak modulation	24
	3.5	Power set point	25
	3.6	Primary Audio Source	25
	3.7	Turn RF Power ON	30
4	Addit	ional Installation Steps	31
	4.1	Password **Required for Remote Control**	31
	4.2	SCA & RDS Program Services	31
	4.3	Ethernet/IP Network	33
	4.4	Stereo Generation and Stereo Pilot Injection	36
	4.5	Pre-Emphasis	37
	4.6	Tuning Digital Mode RF Amplifier Linearity	38
	4.7	Secondary Audio and Silence Timeout	40
5	STXe3	-Main Rear Features & Connections	41
	5.1	GPIO	42
	5.2	BE INTERFACE	44
	5.3	ETHERNET	44
	5.4	COM IN	44
	5.5	COM OUT	44
	5.6	AES	44
	5.7	LEFT and RIGHT	45
	5.8	COMP	45
	5.9	SCA1 and SCA2	45
	5.10	19kHz OUT	45
	5.11	PA RF IN	45
	5.12	10MHz IN	45
	5.13	1 PPS IN	45
	5.14		45
	5.15		46
	5.16		46
	5.17		46
	5.18	Ground	46
~	5.19	AC INPUT & Power Switch	46
6	SIXe3	-IVIAIN FRONT FEATURES & CONTROIS	47
	6.1 C 2		4/
	b.2		48 40
	6.3		48
	б.4 с г	۲۸ ۵۲	48 40
	0.5 6.0		4ð 40
	0.0		4ð 40
	0./		48 40
	b.8	TRANSIVITTER CONTROL CENTER	49

7	Theor	y of Operation	51
8	Basic	, HTML Web Pages	57
	8.1	Login Profiles - Basic Web Page	58
	8.2	Posting Setup and Operating Data	59
	8.3	PA Status and Event Logs	61
	8.4	RDS and FSK Setup	62
	8.5	Audio Delay Setup	63
9	Enhar	nced Web GUI	64
	9.1	Login Profiles – GUI Web Page	65
	9.2	Navigation	66
	9.3	Power Amplifier	68
	9.4	Exciter	69
	9.5	Input/Output	70
	9.6	Audio	71
	9.7	Logs	72
	9.8	Other Features - VSWR vs Reflected Power	73
10	SNMP)	74
	10.1	Authentication	74
	10.2	Objects	74
11	Troub	leshooting	75
	11.1	Event Log	75
	11.2	Standby	75
	11.3	Failsafe	75
	11.4	Mute	75
	11.5	Internal Exciter Diagnostics	76
	11.6	Power Amplifier Diagnostics	76
12	Appe	ndix	78
	12.1	Website	78
	12.2	Default Operation & Settings	78

Figures

Figure 1 –Installation Locations for Equipment Rack	13
Figure 2 – STXe PA Assembly with TX Control Center	14
Figure 3 – STXe Control Unit	14
Figure 4 – Combiner Rear View	15
Figure 5 – STXe 5 Rear View Cabinet Installation	16
Figure 6 – RF Splitter	17
Figure 7 – DIN Rail Connectors for AC Distribution	17
Figure 8 – PA Assembly AC Input	18
Figure 9 – Fused DIN Connector	18
Figure 10 – Communication Cabling	19
Figure 11 – STXe Control Unit	19
Figure 12 – BE Activation Stub	20
Figure 13 – GPIO Fail Safe Jumper	20
Figure 14 – Feature / Connector Location REAR	41
Figure 15 – Control and Feature Locations - FRONT	47
Figure 16 – Transmitter Control Center	49
Figure 17 – Transmitter Control Center Menus Sheet 1	53
Figure 18 – Transmitter Control Center Menus Sheet 2	55
Figure 19 – Web Interface Main Page	57
Figure 20 – Web Interface Authentication	58
Figure 21 – Data Entry Windows	59
Figure 22 – Expanded Views of Data Fields	59
Figure 23 – Web Interface PA Status Page	61
Figure 24 – Web Interface Events Page	61
Figure 25 – Internal RDS Setup Link	62
Figure 26 – RDS Setup Page	62
Figure 27 – Audio Delay Web Interface	63
Figure 28 – Link from Basic Web Page to GUI Main Page	64
Figure 29 - Main GUI Page	64
Figure 30 - GUI Pointer Icons	65
Figure 31 – GUI Login Selection	65
Figure 32 – GUI Login Process	65
Figure 33 – GUI Navigation Bar	66
Figure 34 – Common Features & Items Displayed in all Screens	66
Figure 35 – Power Amplifier Display	68
Figure 36 – Exciter Display Details	69
Figure 37 – I/O Display Details	70
Figure 38 – Audio Display Details	71
Figure 39 – Logs Display Details	72
Figure 40 – VSWR or Reflected Power Display	73
Figure 41 - Bar Graph Options	73

©2023 Broadcast Electronics

Table 1 – Specifications: STXe 5	11
Table 2 – GPIO Pins	42
Table 3 – BEI Pins	44
Table 4 – Common Features & Items Displayed in all Screens	67
Table 5 – Power Amplifier Display Features	68
Table 6 – Exciter Page Features	69
Table 7 – Audio Page Features	71
Table 8 – Exciter Diagnostics Details	
Table 9 – PA Diagnostics Details	

х

©2023 Broadcast Electronics

1 Specifications

Table 1 – Specifications: STXe 5

RF Specifications

Output Power:

500 to 5500 Watts FM Only

1-5/8 Flange Output Connector

50 Ohm Impedance VSWR 1.5:1 at rated power FM Only

Efficiency:

70% typical AC to RF (FM Only)

Modulation Type:

Direct-to-channel digitally generated FM (no analog up-conversion); FM only, HD Radio only, or HD Radio + FM, DRM+

Capabilities:

Up to 300KHz

Audio Inputs:

AES, L&R analog, composite, SCA/RBDS/RDS external generator in, SCA audio inputs (2)

Asynchronous AM S/N Ratio:

Better than -65dB (-70dB Typical) referenced to average peak-to-peak carrier amplitude. 75uSec de-emphasis

Synchronous AM S/N Ratio:

Better than 60dB referenced to average peak-to-peak carrier amplitude. 75kHz deviation @400Hz

Spurious and Harmonic:

85dB or better, low pass filter standard

Audio Specifications

Amplitude Response:

Composite/ AES: +/-0.03dB, 30 Hz to 53 kHz; +/- -0.1dB, 53kHz to 100kHz Analog L&R: +/- 0.25, 30Hz to 53kHz90 to 264VAC; 47-63Hz

Total Harmonic Distortion + Noise:

Composite: 0.005% or less @400Hz, 10-22kHz bandwidth, 75uSec deemphasis. AES/ Analog L/R Stereo: -0.01 typical @400 Hz, 10-22kHz bandwidth 75uSec deemphasis

Composite Intermodulation Distortion + Noise:

0.13% SMPTE (60/7000 Hz, 1:1 ratio), DIM-B: 0.008% (14kHz)

S/N Ratio:

Composite: 85dB below 100& modulation @400 Hz. AES/ Analog L&R Stereo: 80dB below 100% modulation @400Hz. Analog L/R: -70dB, 30Hz to 15kHz

Stereo Separation:

AES: -74dB below 100% modulation @400Hz. Analog L/R: -70dB, 30Hz to 15kHz

Mechanical / Physical

Dimensions:

Rack Space Required 15 RU Total

- 19"W x 26.25"H x 36" D
- (48.3 cm W x 66.7 cm H x 72 cm D)
- Rear vertical support rails required for supplied AC DIN Connector

Power Amplifiers (Qty 2) 4RU Each PA

- 19"W x 7" H x 28.5" D (Each)
- (48.3 cm W x 17.7 cm H x 72 cm D)

Combiner Assembly (Qty 1) 6RU

- 19"W x 10.5"H x 16.5" D (Each)
- (48.3 cm W x 26.7 cm H x 42 cm D)

Controller Assembly (Qty 1) 1 RU

- 19"W x 1.75" (1RU) H x 9.5" D (Each)
- (48.3 cm W x 4.5 cm H x 24 cm D)

Weights:

Power Amplifiers (Qty 2)

- 60lbs (24kg) Each
 - Combiner Assembly (Qty 1)
- 25 lbs (10 kg)
- Controller Assembly (Qty 1)
- 4 lbs (1.6kg)

Electrical / Environmental

AC Input Voltage

- 200 – 264 VAC Single Phase, 47 -63 Hz

Cooling Air Requirement

- 1200 CFM

Dissipation / BTU

- 2937 Watts / 10,021 BTU/H at 5kW into 50 Ohm Load

:

2 Installation & Introduction

2.1 Overview of Major Assemblies Front View

Figure 1 – Installation Locations for Equipment Rack

STXe Control Unit

2.1.1 Power Amplifier Assemblies

There are two PA Assemblies in the STXe 5. Both assemblies have identical RF amplifier circuitry, PA power supplies and AC distribution. The difference between the Main PA Assembly vs the Add-On PA assembly is the Main PA will contain a *Transmitter Control Center*, and *CPE*. The combination of these two amplifiers is to as the basic configuration.

The Transmitter Control Center is the two circled areas shown in the front view below. In the basic configuration of the STXe 5, the second PA assembly will not have this and will be blank in these areas. The PA with the Transmitter Control Center is identical to the STXe 3 transmitter and reference to the STXe 3 in other parts of the manual is synonymous to the Main PA Assembly

Figure 2 – STXe PA Assembly with TX Control Center

All connections for the transmitter system will be made in the rear of each assembly. Refer to Section 5 for more detailed information on the rear interconnections of the PA assemblies.

2.1.2 STXe Control Unit

The STXe Control Unit monitors the total RF output forward & reflected power, plus the power entering the isolation / reject load on the combiner. This unit communicates with the transmitter control center in the Main PA via its COM IN port connection.

Figure 3 – STXe Control Unit

In configurations where two identical power amplifiers resulting in each PA having a CPE, the STXe Control Unit provides the exciter switching feature.

2.1.3 Combiner Assembly

The STXe Combiner Assembly uses two 3dB hybrids in this system. One hybrid is used for power combining the RF outputs from each Power Amplifier Assembly. A second smaller hybrid is used to divide the exciter RF drive in to two equal RF signals.

Additional information on the RF system can be found in the Theory of Operation, Section 7.

2.2 Installation

THE WEIGHT OF THE POWER AMPLIFIERS REQUIRES MORE THAN ONE PERSON TO INSTALL IN THE RACK.

After installing the major assemblies in the customer's rack, install the AC DIN Rail in the location shown in Figure 5. Cabling shown in this rear view is as follows:

- RF Drive between the Power Amplifiers and the Splitter.
- Power Amplifier RF Outputs to Combiner
- AC Distribution from DIN Rail to the Assemblies
- Ethernet communication between Assemblies

Figure 5 – STXe 5 Rear View Cabinet Installation

- 1. The Splitter BNC connector labeled INPUT goes to the BNC connector labeled EXC RF OUT on the Main Power Amplifier.
- 2. Splitter connector 0°OUTPUT goes to the Add-On Power Amplifier BNC connector labeled PA RF IN. The Add-On is the PA in the lower position of the rack.
- 3. Splitter connector -90°OUPUT goes to the Main Power Amplifier BNC connector labeled PA RF IN.

Figure 6 – RF Splitter

2.2.2 RF Combiner 7/16 Cables

The 7/16 RF inputs on the hybrid combiner will be on the underside of the hybrid enclosure:

- 1. Main PA 7/16 RF Out into Combiner -90°INPUT
- 2. Add-On PA 7/16 RF Out into Combiner 0°INTPUT

2.2.3 AC Distribution and AC Mains Connection

Connect the AC distribution cables first and then complete the AC installation with connecting to the sites AC mains power source

Figure 7 – DIN Rail Connectors for AC Distribution

Each pair of the larger wire gauge DIN connectors is internally bussed together for the L1, L2 and GND AC mains connection. L1 & L2 are also jumper over to the smaller Accessory connectors. These and black colored connectors shown if Figure 7.

1. Use (1) Red, (1) BLK and (1) GRN/YEL AC cable to each PA assembly's AC Input Switch as shown in Figure 8.

Figure 8 – PA Assembly AC Input

- 2. Use one of the IEC C13 accessory cables to go to the STXe Control Unit
- 3. Use the remaining accessory cable to connect the Combiner ISO/Reject Load cooling fan.

Also note that the black accessory DIN connectors are fused. Figure 9 shows how these would be accessed if a fuse is needed to be replaced for future reference.

Figure 9 – Fused DIN Connector

4. Connect the site's AC Mains Power to the DIN Rail, L1, L2 & GND terminals. Leave AC mains power off until needed in the Initial Turn On in the next Section.

2.2.4 Communication RJ45 Cabling

1. Connect the cables provided as shown in Figure 10 for communication between the major assemblies of the STXe5.

2.2.5 STXe Control Unit Cables

Figure 11 – STXe Control Unit

- 1. AC Input: IEC C13 cable from AC DIN RAIL
- 2. COM IN RJ45 cable from Add-On PA communication cable.
- 3. COM OUT Terminated with RJ45 connector load
- 4. FORWARD SMA RF cable from Combiner 1 5/8" Line Section FWD sample.
- 5. REFLECTED SMA RF cable from Combiner 1 5/8" Line Section RFL sample
- 6. ISO-REFECT SMA RF cable from Combiner 7/16 Directional Coupler Section FWD sample

The activation stub is required for operation. If the stub was removed for shipment, connect it to the BE Interface located just below the GPIO connector as shown in Figure 12B. Secure the two jackscrews with a small flat screwdriver.

Figure 12 – BE Activation Stub

If the STXe 5 was purchased with other system options such as the VPe signal generator that utilize this connection, save this stub for servicing or bench testing.

2.2.7 GPIO Remote Station Interface

For General Purpose Input/Output wiring connections, use the supplied 37PIN female D-Subminiature connector 418-0283 and it's D-Sub Shell 417-0284 for this solder connector.

Refer to Table 2 located in section 5.1 GPIO, for the pin out information for connection to a sites remote control system.

All installations require unmute/failsafe to be activated at a minimum. If this is the only site requirements, follow these steps for setup.

1. Connect unmute/failsafe pin 2 to pin 19 through the site's failsafe relay. OR...If no transmitter failsafe circuitry exists, and for bench testing, substitute a wire jumper as shown in Figure 13-A.

Figure 13 – GPIO Fail Safe Jumper

- 2. Insert the connector on one of the shell halves.
- 3. Place the other shell half on top and set the nuts in place as indicated in the Figure.
- 4. Plug the assembly on the GPIO connection and secure the screws.

2.2.8 Audio

Use the I/O information in Section 5 for completing the installation of the sites audio connections.

3 Initial Turn On

3.1 Turn on AC

- 1. Check each AC switch on the Power Amplifiers to be in the ON position.
- 2. Apply AC mains power from the sites circuit breaker.

3.2 Set Time and Date

The internal real time clock holds the current time and date for use in the event log. This is a rudimentary device that supports 24-hour format and does not adjust for daylight saving. If installing during summer in a daylight saving region, following standard non-daylight time is recommended instead (the internal real time clock does not automatically compensate for any daylight saving).

1. From the main screen on the transmitter control center on the front panel of the main assembly, press up or down to navigate to the Date and Time menu. Press enter to continue.

2. Press up or down to select the time editing screen.

TRANSMITTER CONTROL CENTER
SET CLOCK
TIME

3. Set the local (24 hour non-daylight saving) time. Press left or right to move the cursor and press up or down to increment or decrement the number.

TRANSMITTER	CONTROL CENTER
TIME->	00:00:00
	^

- 4. Press enter when finished editing for the setting to take effect in the system, save, and start keeping time.
- 5. Enter the date and time menu again. Press up or down to navigate to the date editing screen.

6. Set the current date. Press left or right to move the cursor and press up or down to increment or decrement the number.

7. Press enter when finished editing for the setting to take effect in the system, save, and keep time.

3.3 Frequency

Navigate to Frequency to ensure the frequency is set to the end user frequency requirements. If a change is required, the frequency can be changed directly from the front panel – no hardware modifications or tuning procedure is required when the carrier frequency is changed.

If the STXe RF output is on ("TX ON") when the frequency is changed, the system will momentarily turn the RF output off, change the frequency, and immediately turn RF back on again with the new frequency

1. From the main screen on the transmitter control center on the front panel of the main assembly, press up or down to navigate to the FREQUENCY menu. Press enter to continue.

2. Press left or right to move the cursor between frequency digits. Press up or down on each digit to increment or decrement the number.

3. Press enter when finished editing for the frequency change to take effect.

3.4 100% peak modulation

The STXe defaults to 100% modulation being +/- 75 kHz. This section only applies if the STXe is being used in an installation where 100% modulation is not +/- 75 kHz.

1. From the main screen on the transmitter control center on the front panel of the main assembly, press up or down to navigate to the AUDIO LEVEL menu. Press enter to continue.

2. Press up or down to select DEV, the FM deviation control setting. Press enter to continue.

3. Press left or right to move the cursor between frequency digits. Press up or down on each digit to increment or decrement the number. This change takes effect immediately in the system without saving the setting to allow for active tuning.

TRANSMITTER CONTROL CENTER	
DEV->075kHz	
0.0% ^	

4. Press enter when finished editing to save the deviation control setting.

24

3.5 Power set point

1. From the main screen on the transmitter control center on the front panel of the main assembly, press up or down to navigate to the PWR SET menu. Press enter to continue.

2. Press up or down to select the power set point for the FM operation mode, which should display as active. Note that digital, FM+digital, and hybrid HD sideband settings require an optional VPe system. Press enter to continue.

TRANSMITTER CONTROL CENTER	
POWER	
FM ACTIVE	

3. Press left or right to move the cursor between digits. Press up or down on each digit to increment or decrement the number. Current output forward power measurements are displayed in the lower left of the screen.

CONTROL CENTER
-> 5100W
^

4. Press enter when finished editing for the new power set point to take effect.

3.6 Primary Audio Source

The STXe provides built-in injection of one primary audio source: AES, Composite, or Analog L/R. Secondary audio sources SCA1, SCA2, and RDS can be enabled and used in any on/off combination with these primary audio sources.

3.6.1 AES

The STXe supports standard AES audio as well as 192 kHz Composite over AES. The 192 kHz Composite over AES operates with various brand name systems including Wheatstone, Omnia and Orban audio processors.

To operate Composite over AES, follow the steps below, but select "AES COMP" rather than "AES" as the input

1. Connect an XLR cable from the desired AES audio source.

2. From the main screen on the transmitter control center on the front panel of the main assembly, press up or down to navigate to the AUDIO INPUT menu. Press enter to continue.

3. Press up or down to select AES as the primary audio source. Press enter to continue.

4. The screen will display the injection percentage allocated to AES. This setting allows the customer to budget the modulation when supplementary services are present. Leave this at 100% if there are no supplementary services in use. If supplementary services are present, set the total modulation percentage associated with AES. This can be adjusted from 70% to 100%. Use the left and right arrows to move the cursor. Press up or down buttons for each digit to increment or decrement the number.

- 5. Press enter when finished editing for the setting to take effect in the system and save.
- 6. AES audio levels are expressed in terms relative to Full Scale of the digital signal path selected.
- 7. From the main screen on the transmitter control center on the front panel of the main assembly, press up or down to navigate to the AUDIO LEVEL menu. Press enter to continue.

8. Press up or down to select "AES". Press enter to continue.

- 9. The display will show the current peak modulation attributable to the AES input. The level can be adjusted by changing the associated dBFS setting. This has a range of -28.0 dBFS to +0.0 dBFS in 0.1 dB steps. This represents the AES level that will generate the percentage modulation shown on the screen
- Press left or right to move the cursor. Press up or down on each digit to increment or decrement the number and take effect in the system. This has immediate effect. Do this until the displayed left channel peak hold is the desired value – typically 100%.

11. Press enter when finished editing to exit the sub-menu.

3.6.2 Analog L/R

- 1. Connect XLR cables from the desired Analog Left and Right audio sources. Activate the source with constant level tones or typical level real audio on each channel.
- 2. From the main screen on the transmitter control center on the front panel of the main assembly, press up or down to navigate to the AUDIO INPUT menu. Press enter to continue.

3. Press up or down to select ANLG L/R as the primary audio source. Press enter to continue.

- 4. Set the stereo injection reduction (to allocate injection budget for secondary services). Leave this at 100% if there are no secondary services.
- 5. Press left or right to move the cursor. Press up or down on each digit to increment or decrement the number.

6. Press enter when finished editing for the setting to take effect in the system and save.

7. From the main screen on the transmitter control center on the front panel of the main assembly, press up or down to navigate to the AUDIO LEVEL menu. Press enter to continue.

8. Press up or down to select L. Press enter to continue.

- 9. The display will show the current peak modulation attributable to the Left input. The level can be adjusted by changing the associated gain/attenuation. This has a range of -96.0 dB to +22.0 dB in 0.25 dB steps. Press left or right to move the cursor.
- 10. Press up or down on each digit to increment or decrement the number and take effect in the system. This has immediate effect. Do this until the displayed left channel peak hold is the desired value typically 100%.

- 11. Press enter when finished editing to save the L calibration setting.
- 12. Repeat these steps 6 11 for R.

3.6.3 Composite

- 1. Connect a BNC cable from the desired unbalanced composite audio source. Activate the source with a constant level tone or typical level real audio.
- 2. From the main screen on the transmitter control center on the front panel of the main assembly, press up or down to navigate to the AUDIO INPUT menu. Press enter to continue.

3. Press up or down to select COMPOSIT as the primary audio source. Press enter to continue.

4. From the main screen on the transmitter control center on the front panel of the main assembly, press up or down to navigate to the AUDIO LEVEL menu. Press enter to continue.

5. Press up or down to select COMP. Press enter to continue.

- 6. The display will show the current peak modulation attributable to the Composite input. The level can be adjusted by changing the associated gain/attenuation. This has a range of -96.0 dB to +22.0 dB in 0.25 dB steps. Press left or right to move the cursor. Press up or down on each digit to increment or decrement the number. This has immediate effect. Do this until the displayed peak hold is the desired value typically 100%.
- 7. Note: The Composite input is summed with the supplementary sources SCA1, SCA2, and RDS. When calibrating the Composite input, the supplementary sources should be turned off

8. Press enter when finished editing to save the Composite calibration setting.

3.7 Turn RF Power ON

If all setup steps have been completed, including any desired additional features in the next section, the system should be ready for operation.

Ensure the RF cabling is correct from the Splitter to the PA Amplifiers and then back to the Combiner. Note this warning.

WHEN AN RF PHASE IS REVERSED, ALL COMBINED POWER WILL ENTER THE REJECT LOAD AND NOT EXIT THE ANTENNA OUTPUT PORT.

In the event this should happen, the STXe Control Unit will limit power to 700 watts into the reject load to prevent over dissipation of the load.

1. On the Main PA, transmitter control center, press the return button.

TRANSMI	TTER CONTROL CENTER
<	TX OFF >
ow	RFL=0

2. Press the button under "ON" to power up the transmitter.

3. In addition to the power displayed on the transmitter control center, use the UP/Down – Left/Right arrow on the STXe Control Unit to navigate to Forward power, Reflected power and ISO/Reject load power.

4 Additional Installation Steps

4.1 Password **Required for Remote Control**

The default password of "00000000" is invalid for remoted control access.

One or more of the passwords (operator, user, or chief) must be set to be used to control the system through any IP interfaces.

1. From the main screen on the transmitter control center on the front panel of the main assembly, press up or down to navigate to the PASSWORD menu. Press enter to continue.

2. Press up or down to select the password to be set. Press enter to continue.

3. Press left or right to move the cursor between password digits. Press up or down on each digit to increment or decrement the number password.

4. Press enter when finished editing for the password to take effect in the system.

4.2 SCA & RDS Program Services

The STXe allows operation of three supplementary audio services. These are labeled SCA1, SCA2 and RDS. It is expected that these will be generated by an external system, modulating the audio at the proper frequency between 57 kHz and 100 kHz.

The setup of these audio input sources all follow the same pattern as one another Repeat these steps below to utilize any of these inputs.

- 1. Connect a BNC cable from the external signal generator source to the secondary program input. Activate the source with a constant level tone or typical level real audio.
- 2. From the main screen on the transmitter control center on the front panel of the main assembly, press up or down to navigate to the SCA/RDS menu. Press enter to continue.

3. Press up or down to select the desired SCA/RDS input.

TRANSMITTER CONTROL CENTER	
SCA/RDS	
SCA1 OFF	

4. Press up or down to change the setting to ON.

	TRANSMITTER CONTROL CENTER
	SCA1 ->ON
	^
L	

- 5. Press enter for the on/off setting to save and take effect in the system.
- 6. From the main screen on the transmitter control center on the front panel of the main assembly, press up or down to navigate to the AUDIO LEVEL menu. Press enter to continue.

TRA	NSMITTER CONT	ROL CENTER
<	AUDIO LI	EVEL >

7. Press up or down to select the desired input and press enter to continue.

TRANSMITTER CONTROL CENTER	
AUDIO LEVEL	
SCA1->-12.00dB	

- 8. Press left or right to move the cursor. Press up or down on each digit to increment or decrement the number and take effect in the system. Do this until the displayed composite peak hold is within a few percent of 100%.
- 9. Note: SCA1, SCA2, and RDS input signals (that are enabled) also contribute to this composite peak hold value. These sources should be turned off before attempting this calibration.

10. Adjust until the displayed composite peak hold is approximately 10%. Note that enabled SCA1, SCA2, RDS, and composite input signals all contribute to this peak hold value. Other sources should be turned off for calibration of each individual channel.

4.3 Ethernet/IP Network

IP network features are entirely optional. System setup sections below contain procedures based on the LCD interface on the front panel of the main assembly, but there is alternative user interfacing for control of all of these setup parameters in both the web and SNMP interfaces.

The currently used configuration, such as IP address, can be observed in front panel menus. The actual configuration of the system may be determined by DHCP rather than the static settings. Configuration should be made to match whatever network setup is installed.

Consult your network manager or internet service provider to ensure that the correct IP settings are used.

For any network type, connect an Ethernet cable from the ETHERNET port to networking equipment (such as a switch or gateway).

4.3.1 Static IP

Use either this simple static IP setup or dynamic host control setup.

1. From the main screen on the transmitter control center on the front panel of the main assembly, press up or down to navigate to the ETHERNET/IP menu. Press enter to continue.

2. Press up or down to select the port to be set up. CONTROLLER is the ETHERNET port on the STX. Exgine is the ETHERNET DATA port on the optional VPeXG system. VPe is the ETHERNET VPE port on the optional VPeXG system. Press enter to continue.

3. Press up or down to select the IP parameter to be observed or changed. Press enter to continue.

4. This level displays the current state of the IP port, which includes DHCP, IP address, subnet mask, gateway address, and MAC address. Press up or down to observe the currently active IP configuration (0.0.0.0 IP address typically indicates that the port is not connected), and then press enter to modify the static IP setting.

TRANSMITTER CONTROL CENTER IP ADRESS 010.002.107.030	TRANSMITTER CONTROL CENTER SUBNET MASK 255.255.000.000
TRANSMITTER CONTROL CENTER GATEWAY ADDRESS 010.002.001.001	TRANSMITTER CONTROL CENTER MAC ADDRESS AABBCCDDEEFF

5. Press left or right to move the cursor to any of the 12 digits. Press up or down to increment or decrement the number. Press enter when finished making the setting change.

6. Verify that the settings active by connecting to the port.

4.3.2 Dynamic Host Control

Dynamic IP setup using DHCP is appropriate for more sophisticated and secure network setups. Ethernet will not function when DHCP is enabled and a DHCP-based host controller (typically an internet gateway) is missing from the network setup.

Use either this dynamic host control setup or static IP setup.

1. From the main screen on the transmitter control center on the front panel of the main assembly, navigate to the ETHERNET/IP menu. Press enter to continue.

2. Press up or down to navigate to the ETHERNET/IP CONTROLLER. Press enter to continue.

3. Once in the menus, press up or down to select CONTROLLER DHCP and press enter.

4. Once in the menu, press up or down to select DHCP and press enter.

5. Press up or down to change the selection to ENABLED and press enter.

6. Verify that the host control function is active by connecting to the IP port with a web browser. Connect through the managed switch/gateway. Alternatively, view the IP ADDRESS status in these menus to retrieve the current host and access the port through a different local switch.

Internal stereo generation utilizing the AES or Analog L/R audio input channels is optional.

1. From the main screen on the transmitter control center on the front panel of the main assembly, press up or down to navigate to the MONO/ST MODE menu. Press enter to continue.

2. Press up or down to select STEREO.

- 3. Press enter for the selected mono/stereo mode to save and take effect in the system.
- 4. Note that if changing from any mono mode to stereo, the internally generated 19 kHz stereo pilot will automatically turn on at the previously set level. Change back to mono from stereo automatically turns the stereo pilot off.
- 5. To change the injection of the 19kHz stereo pilot: from the main screen on the transmitter control center on the front panel of the main assembly, press up or down to navigate to the PILOT menu. Press enter to continue.

6. Press up or down to select LEVEL.

7. Set the injection level of the pilot in the stereo signal (% peak injection is multiplicative to stereo AES or Analog L/R reduction factors). Press left or right to move the cursor. Press up or down to increment or decrement the number.

	TRANSMITTER CONTROL CENTER
	PILOT->10.0%
	^
L	

8. Press enter for the pilot level to save and take effect in the system.

The Pilot has two modes of operation: 1) On, or 2) Stereo. When the On mode is selected, the 19 kHz pilot will always be present. If in Stereo mode, the Pilot will only be present if the STXe is in Stereo mode.

4.5 Pre-Emphasis

Internal pre-emphasis filtering on the AES and Analog L/R audio inputs is another standard option feature tied to internal stereo generation. North American receivers are typically compatible with 75 microsecond filters while European receivers typically utilize 50 μ s.

1. From the main screen on the transmitter control center on the front panel of the main assembly, press up or down to navigate to the pre-emphasis menu. Press enter to continue.

2. Press up or down to select the desired filter type.

3. Press enter for the filter change to save and take effect in the system.

4.6 Tuning Digital Mode RF Amplifier Linearity

Some VPe XG option setup conditions (frequency, loads, etc.) require PA digital operation tuning to successfully transmit Digital-only or FM+Digital waveforms. This is typically accomplished by increasing PAV to linearize, or by decreasing PAV to add efficiency and keep power amplifiers as cool as possible.

If PAs are ever excessively hot during this process, immediately restore voltages to default on all PAs, reduce system power (total or side-band power in hybrid modes) until within limits, and contact RF Technical Services.

THIS PROCESS CARRIES A RISK OF AMPLIFIER PART FAILURE DUE TO EXCESSIVE TEMPERATURES. PROCEED WITH CAUTION.

Open a PA web page on a local PC to see all power and temperature statuses at once.

1. Navigate to the power settings menu on the transmitter control center front panel interface.

TRANSMITTER C	ONTROL CENTER
<pwr set<="" td=""><td>=3000W></td></pwr>	=3000W>
3000W	RFL=16

2. Press down/up to one of the PA# V screens. There is a screen for each PA in the system, where # is the PA number 1, 2, 3, 4 and 5.

_	TRANSMITTER CONTROL CENTER
	POWER
	PA1 V-> 44.0V
L	

- 3. 1kW systems: increase PAV by 1.0 V at a time and continue to the next step.
- 4. In combined systems, look at the forward power out of each PA. Select the PA that has the lowest power compared to the rest. Increase Voltage in small increments and check the power of all PAs in the system. Note that if power does not increase, the PA is already operating as linear as possible. Do not continue to increase voltage in a linear PA. It will reduce efficiency with no added benefit to the system and can do this to the point of thermal failure. Also note that other PAs will reduce power to maintain total output power. Repeat this step for other PAs in the system.

- 5. After giving VPe adequate time to adapt to the new system characteristics, observe the spectrum and check for sufficient spectral improvement.
- 6. Verify all PA heat sink temperatures at least remain below ambient air temperature plus 50 degrees C, or about 74 degrees C total when the transmitter is operating in a comfortable room temperature.

To increase efficiency in systems operating below nominal power levels, follow a similar process to reduce voltage in a PA until PA output power starts to reduce. In combined systems, this process should start with the highest temperature PAs.

4.7 Secondary Audio and Silence Timeout

The SECONDARY AUDIO feature allows switching to an alternate source after the PRIMARY AUDIO is absent for the time entered in the SILENCE TIMEOUT setting.

1. From the main screen on the transmitter control center on the front panel of the main assembly, press up or down to navigate to the SETUP menu. Press enter to continue.

2. Press up or down to select the secondary audio to be set. Press enter to continue.

3. Press up or down to select one of the 4 inputs; Composite, Analog L/R, AES, AES Composite, or None if secondary audio isn't used. Injection level setup for Secondary Audio will be same as outlined in section 2.3.6.

- 4. Press enter when finished with selection for the secondary audio source to take effect in the system.
- 5. Press SET UP again.
- 6. Press up or down to select SILENCE TIMEOUT and press enter to continue.

7. Press up or down, left or right to enter a timeout in seconds.

8. Press enter when finished for the time out setting to take effect in the system.

5 STXe3-Main Rear Features & Connections

The reference designator box number corresponds to the sub-section number in this section. For example, Box 5.1 corresponds to details in 5.1 of this section

Figure 14 – Feature / Connector Location REAR

©2023 Broadcast Electronics

5.1 GPIO

General Purpose Input/Output, "GPIO" connector. This D-Sub 37 male connector is used in remote station interface control and other machine interfacing. Pin descriptions are described in detail in Table 2.

In the context of TTL interfaces in GPIO and BE-Interface connections, logic low refers to a connection to within 0.8V of isolated ground. Logic high inputs are internally pulled up through 2kOhms to isolated +5V (referenced to GPIO pin 32). Inactive inputs should be open/floating, and not driven. Active edge refers to a transition from the inactive state to the active state. Active low refers to a momentary transition from the high state to the low state, and the implication is that no action is performed on the transition back to high. A momentary input pulse such as this should be approximately 100ms in duration to ensure capture of the event.

Pin	Direction	Name	Description
1	Input	Fault Reset	Resets all the transmitter faults with an active low
			edge.
2	Input	Failsafe	Transmitter failsafe input. Requires a sustained low
			to run RF in the system.
3	Input	Transmitter On	Turns RF power on with an active low edge.
4	Input	Transmitter Off	Turns RF power off with an active low edge.
5	Input	Mute	Mutes RF while the input is held low. This essentially
			performs the function of "Transmitter Off" with a
			low edge and "Transmitter On" with a high edge.
6	Input	Raise Transmitter	Raises the system power 10 Watts every second that
		Power	this input is held low.
7	Input	Lower Transmitter	Lowers the system power 10 Watts for every second
		Power	that this input is held low.
8	Input	Reserved	Reserved
9	Input	Controller Reset	Forces hardware reset on the system controller and
			exciter when active. Hold this line low for up to 5
			seconds and release to enable RF output once again.
			Note: this input is not intended to be used during
			normal operation of the system and should only be
			used in extreme circumstances.
10	Input	Reserved	Reserved
11	Input	Reserved	Reserved
12	Input	Ground	Alternative isolated ground pin internally connected
			to pin 19, see below for details.
13	Input	Reserved	Reserved
14	Input	VPe System Present	Indicates the presence of a VPe system in the setup.
			Checked at system boot for a held low level.
15	Output	Reflected Power	DC voltage for total reflected power at the system RF
			output. Varies linearly from $0V = 0W$ to $5V = 100$ *
			Model W (100W for 1kW, 200W for 2kW, etc.).
16	Output	Selected PA Total	DC voltage for total RF power supply current for a PA
		Current	module (select via pin 18). Varies linearly from $0 =$
			0A to 5 V = 50 A.
i			

Table 2 – GPIO Pins

Pin	Direction	Name	Description
17	Output	Selected PA	DC voltage for heat sink temperature reading for a
		Temperature	PA module (select via pin 18). Varies linearly from 0V
			= 0 degrees C to 5V $=$ 100 degrees C.
18	Input	PA Module Select	Controls which PA is being monitored by other
			output pins. Each active low edge cycles through
			selections. The end of the selectable PAs is indicated
			by all outputs being \sim 0V. Reserved in 1kW systems.
19	N/A	Ground	Isolated ground intended to be used for safe remote
			input logic connections on this interface. Jumper J9
			allows this to be wired to a system-wide chassis
20	Quitaut	Canaral Fault	ground. Pin 12 provides an alternate connection.
20	Output		Low when any fault is active in the system.
21	Output	VSVVR Fault	Low when the affected part of the system is shut
			VSWR greater than 2 0:1
22	Output	Transmittar On	VSVVK greater than 2.0.1
22	Output	Transmitter Off	Low when system RF output power is off
23	Output	Muto Status	Low when the transmitter is muted via input nin 5
24	Output	AFC Lock	Low when the internal exciter is locked onto the set
23	Output	AI C LUCK	frequency
26	Output	Power Supply Fault	Low when a power supply fault is detected in any RE
20	Output		power supply ladit is detected in any hi
27	Output	Reserved	Reserved
28	Output	PA Fault	Low when any fault is detected in any PA module.
29	Output	PA Forward Power	DC voltage for PA forward power (select via pin 18).
			Varies linearly from $0V = 0W$ to $5V = 1250$ W.
30	Output	PA Reflected Power	DC voltage for PA reflected power (select via pin 18).
			Varies linearly from $0V = 0W$ to $5V = 100$ W.
31	Input	Reserved	Reserved
32	Output	+5V	Low power logic voltage supply for remote interface
			logic on this interface. Jumper J26 allows this to be
			wired for fused or isolated power supply. Isolated
			current limit is 7.5mA. Fused current limit is 0.5A.
33	Output	Forward Power	DC voltage for system forward output power. Varies
			linearly from $0V = 0W$ to $5V = 1100 *$ Model Watts
2.4			(1100W for 1kW, 2200W for 2kW, etc.).
34	Output	PA Voltage	DC voltage representing the variable RF power
			supply in a PA (select via pin 18). Linear from $UV =$
25	Output	Deserved	0 V U O V = 50 V.
20	Output	Reserved	Reserved
30		Reserved	Reserved
3/	IN/A	Ground	Chassis ground

5.2 BE INTERFACE

Broadcast Electronics machine interface. This D-Sub 37 female connector provides conduits for many exciting new product options including a standby system control and exciter, digital radio generators, and much more.

Pin	Direction	Name	Description
2	N/A	Ground	Chassis Ground
4	Input	Active/Standby	Tie to ground to activate this CPE, open for standby
Other		Reserved	Reserved

Table	3 –	BEI	Pins
-------	-----	-----	------

5.3 ETHERNET

Ethernet is provided on a standard 10/100 Mbps RJ45 connector. Connect to a local area network switch and/or to a gateway using Cat5E cable for access through the network. This interface automatically negotiates speed and hardware interfacing; a crossover cable is not required. Direct connections to a PC or other network controller can be made with either a crossover or straight Ethernet cable.

IP-based interfaces such as the built-in website and SNMP require this to be connected and the network parameters set up through the front panel interface. There is no explicit limit on the number of concurrent users that can be connected to the STXe; however an excessive number of connections will cause a decrease in performance.

5.4 COM IN

System communications bus input. This RJ45 jack is intended to be used in the backup main unit in redundant internal exciter configurations. In this case, a communications cable must be connected from COM OUT on the primary main unit to this input on the standby unit.

This output is not used in typical 1kW configurations. Connecting to this jack improperly may cause internal system communications failures.

5.5 COM OUT

System communications bus output. This RJ45 jack is used to wire the communications bus to the rest of the system. For main/backup systems, this connects to the standby unit. The second main assembly in a 2kW system setup connects to the combiner. For all other configurations, this must connect to the next add-on PA in the chain.

This output is not used in typical 1kW configurations. Connecting to this jack improperly may cause internal system communications failures.

5.6 AES

AES/EBU audio input connector. This XLR connector is used for inputting digital audio to the standard stereo generator in the internal exciter. Select AES as the primary audio source to modulate RF with this audio.

Supported bitrates include 32, 44.1, 48, 96, and 192 ksps.

5.7 LEFT and RIGHT

Left and Right balanced analog audio input connectors. These XLR connectors input audio into the standard stereo generator system in the internal exciter. Set Analog L/R as the primary audio source in order to modulate RF with this audio.

An internal hardware jumper allows these inputs to be switched to 10k Ohm impedance.

5.8 COMP

Unbalanced composite audio input connector. This BNC connector allows input of baseband audio up to 100 kHz into the internal exciter. Setting Composite as the primary audio source modulates RF with this signal.

5.9 SCA1 and SCA2

Subsidiary Communications Authorization audio input connectors. These BNC connectors allow subcarrier programs up to 100 kHz generated by external devices to be injected in the internal exciter. These inputs are enabled and disabled independently.

5.10 19kHz OUT

19 kHz stereo pilot output connector. This BNC connector is used to output the pilot signal for optional use in external synchronization equipment. The output wave form is a constant 1 V peak-to-peak sinusoid when connected to a high impedance termination.

5.11 PA RF IN

Power Amplifier RF Input BNC connector. In an STXe5, this is connected to the Splitter's RF outputs located on the Combiner Assembly. In a stand-alone STXe3, a jumper connects to the EXC RF OUT as pictured in Figure 10.

5.12 10MHz IN

10 MHz clock input connector. This BNC synchronizes the exciter's internal clocking to a connected sinusoidal clock signal. To lower the chances of drift, connect high precision clock generators such as GPS receiver modules or digital radio signal generators.

5.13 1 PPS IN

The one pulse-per-second BNC input connector synchronizes stereo pilot signals such that rising zero-crossing point in the pilot signal corresponds to the rising edge of this logic clock. A high precision clock generator such as a GPS receiver module or a digital radio signal generator is recommended.

5.14 EXC RF OUT

Internal Exciter RF output connector. On the STXe, this BNC connector outputs the internally generated exciter power level RF signal to the RF Splitter located on the Combiner Assembly. In a stand-alone STXe3, a jumper connects to the PA RF IN as pictured in Figure 10.

5.15 RDS

Radio Data System input connector. This BNC connector allows input of an externally generated RDS standard signal to broadcast time, station identification, and program service information. This input is enabled and disabled independently

5.16 RF OUT

The amplifiers final RF power output uses a 7/16 Female DIN connector to go to the Combiner Assembly Inputs in an STXe5 system. For and STXe3 the output is connected the 50 Ohm antenna or RF system.

5.17 RF SAMPLE

Power amplifier RF sample connector. This BNC carries a coupled RF signal from the PA section. This is intended to be used for optional monitoring and troubleshooting of RF output.

Nominally generates about 19 dBm at full PA output power. The output level scales with total output power of the PA module.

5.18 Ground

Ground bolt that should be used to connect chassis ground to equipment rack or station ground.

5.19 AC Input & Power Switch

AC power switch. This hand operated switch turns on or off power service to the device. Complete power-down of the module may take a few seconds.

6 STXe3-Main Front Features & Controls

The front assembly provides the transmitter control center and contains LED indicators for the system controller, internal exciter, internal power amplifier, and an LCD user interface. The reference designator box number corresponds to same sub-section number in this section. For example, Box 6.1 corresponds to details in 6.1 of this Section

Figure 15 – Control and Feature Locations - FRONT

6.1 AUDIO

The audio LED indicates the status of the current primary audio source and remains green until a fault is detected. If an audio peak is detected, this LED turns red and also during a silence condition when no secondary audio is setup. If a secondary audio source is setup, the LED will turn orange after the primary silence timeout. The LED will return to green when the fault is cleared and the exciter switches back to primary. Check the exciter diagnostics for details on what alarms or faults may be active.

6.2 EXC DRV

The exciter drive LED indicates the status of any alarms or faults related to the exciter or exciter drive in an internal PA. Green indicates that the exciter has settled into normal operating conditions. Orange indicates an alarm condition. Red shows when the exciter has a fault condition. See Table 8 – Exciter Diagnostics Details in section 11 for more information.

Note that there is overlap between internal exciter and internal PA status for drive detection. An exciter drive alarm indication may originate in measurements within the PA.

6.3 CNTL

The system control LED shows the status of the system controller. Green indicates normal control operation. Red indicates a loss of monitoring and control communication between controller units. This could be between the system controller and the front panel display, any PA controller, or the combiner controller.

6.4 PA

The power amplifier LED shows status of the internal PA. Green indicates normal operation. Orange indicates an alarm condition. Red indicates a fault and PA shutdown condition. See Table 9 – PA Diagnostics Details in section 10.6 for details on what alarms or faults may be active.

6.5 PS

The power supply LED shows the status of the RF power supply module. Green indicates normal operation. Orange indicates a self-reported alarm. Red indicates a determined fault. Check PA diagnostics for details on what alarms or faults may be active in the supply connected to the PA.

Note that these power supplies are on the same communications node as the PA they are paired with. A communication fault will illuminate red on both the PA and the PS LEDs.

6.6 VSWR

The voltage standing wave ratio LED shows the status of the internal PA output in terms of measured reflected power. Green indicates normal operation into an acceptable load. Orange indicates active foldback protection. Red indicates a fault and shutdown condition.

6.7 FAILSAFE

The failsafe LED is coupled to the failsafe input on the back panel when running transmitter modes. Green indicates the failsafe is connected for normal operation. If red the failsafe is not connected and RF power will not turn on.

In exciter setups this LED is turned off.

6.8 TRANSMITTER CONTROL CENTER

This front panel LCD interface can be used for control and monitoring of all features in the system. Use the five buttons below the screen to navigate and make modifications. Refer to Figure 16 and the sub sections 6.8.1 thru 6.8.6 for details on how to use this interface

Figure 16 – Transmitter Control Center

6.8.1 Contrast Control

A potentiometer tuning tool can be used to adjust the contrast on the LCD screen if desired. Turning the potentiometer clockwise reduces contrast, and turning it counter-clockwise increases contrast.

6.8.2 Left Button

The context dependent left button performs two primary functions. When navigating between screens it allows a return to the main screen from any other navigation screen. When an editing screen is entered this button moves the cursor one space to the left.

6.8.3 Right Button

The context dependent right button performs two primary functions. When navigating between screens it allows a return to the first screen of the submenu tree. When an editing screen is entered this button moves the cursor one space to the right.

6.8.4 Up Button

The context dependent up button performs various functions. When navigating between screens through the trunk it selects a new submenu tree. After entering a submenu screen it either selects different branches or cycles through options. When an editing screen is entered this button modifies the object located at the cursor.

6.8.5 Down Button

The context dependent down button performs various functions. When navigating between screens through the trunk it selects a new submenu tree (in the opposite direction as the up button). After entering a submenu screen it either selects different branches or cycles through options. When an editing screen is entered this button modifies the object located at the cursor.

6.8.6 Return Button

The context dependent down button performs two primary functions. When navigating between screens through the trunk it enters the next level in the menu. This can lead to submenu screens, options selection, or field editing. Once an editing function has been made this saves the field and returns to the first screen in the submenu tree.

7 Theory of Operation

Broadcast Electronics STX & STXe FM transmission systems are equipped with a system controller and exciter platform. The exciter sub-system routes audio and other program service data through digital signal processing, digital up conversion, a numerically controlled oscillator, RF digital to analog conversion, and low-power RF analog signal output. This signal path generates a frequency modulated carrier waveform centered within the traditional FM band.

A micro-controller provides user interfacing (including IP), regulates all signal path stages in the exciter, and negotiates control and monitoring with PA controller and front panel interface controller peripheral micro-control modules through controller area network CAN communications.

STXe systems include numerous built-in safety features. Hardware failsafe can be used to reliably disable RF with external automated or manual controls. Automatic RF power fold-back, and system shutdown mechanisms protect power amplification in events of DC overcurrents, excessive reflected RF power, or dangerously high internal temperatures. Dedicated circuits immediately mitigate unsafe conditions while micro-controllers self-determine system problems, take action as necessary, report faults/alarms, and log issues for troubleshooting.

In standard setups, exciter RF is routed from lower power exciter RF output back into the system in order to drive RF power amplification. Operating mode setup parameters determines the definition of this interface, which is described in following paragraphs.

Systems come standard equipped to run either of two standard modes of power amplification. FM-only mode utilizes a fixed exciter RF drive level. Variable final amplifier voltages compress the RF signal in class C amplifier operation, effectively controlling system gain to maximize power efficiency. FM+Digital and Digital-Only modes utilize fixed gain while operating class AB amplifiers for minimal signal distortions. The exciter drive level then varies to control system output power level.

Power in a digital RF mode exciter system setup is controlled by a higher power transmitter through a 4-state input with these states; mute, lower, hold, and raise. The duty cycle on this input determines system response.

Standalone transmitter and FM-only exciter setups utilize internal digital closed power control based on system forward output. Forward power approaches the active system set-point. The exciter is included in this loop when running digital power modes. FM-only closed loop is entirely contained within a PA microcontroller.

Fans are two-speed and fully turn on through active hardware logic. This logic is coupled to un-inhibit logic between the PA controller and DC power regulation circuitry.

Standard AC mains supply electrical power. An AC throw switch is included. A main power supply module converts AC to fixed DC power for use throughout the system. Power regulation systems input fixed DC and supply various lower level static and variable voltage levels to all circuitry and RF amplifiers. A fan power supply provides dedicated DC to fan(s).

There are two DB-37 connectors and a DB-25 connector to allow the STXe to interface with other equipment. This includes transmitters, remote monitoring and control, and signal generation options.

Figure 17 – Transmitter Control Center Menus Sheet 1

Figure 18 – Transmitter Control Center Menus Sheet 2

8 Basic HTML Web Pages

The STXe comes with a built in HTTP web server monitoring and control interface. To load this page, direct a standard web browser to the IP assigned to the Ethernet port on the system.

Below is the Main Page displayed on the browser tab. Note that addition tabs can be opened to display other pages or even the Enhanced GUI screens.

\leftrightarrow \rightarrow	C 🔺 No	t secure	10	2.4.1	110						e	Ê	☆	*		-	
Current chief	User:					s	ТХе	5 ST	AT	US	PA	GE					
	AUDIO	EXCIT	ER		PA		PAPWF	R SUP	VSV	VR		FAILSA	FE		MUTI	E	
						FRAN	SMITTE	ER FAUL	TS								
	5648	18		ſ	5500		ON	RES	SET	DIS		15:5	3:15	2023	-03-2	28	
	FWD PWR - W	RFL PWR	-w	1	Setpoint -	w	ON/OFF	Fault	Reset	Pre	eset	Tin	ne	D	ate		
		1.12:1 V 84	VR	- 1	RANSM	TTER	READ	INGS/IN	DICAT	IONS	3					-	
																_	
	98.00		FM		NON	IE		75	S	TERE	0	ON		10	0.0		
	Frequency -	MHZ	'A MO	de	Preemp			Mod - KHZ	Ste	reo M	ode	Pilo	t	Pilot	Level		
					IR	ANSI	ILLER	DATA-	1015								
		1	AES		1	ONE		C)			0					
		P	rimary	1	Se	conda	ry	Silence -	Second	Is	Audi	o Delay	'				
					TR	ANSI	IITTER	DATA - 2	2 of 3								
	AES	ACTIVE	E 0	000	000-000	V4.	3 R.42	98 V2	.3 R.3	875	V2.	7 R.40	92	STX	e 5k	W TX	٦
	Audio /	Active/Standl	by	Trans	mitter S/N TR		sion Control	DATA - 3	on Exciter 3 Of 3	FPGA	Versio	n Exciter	DSP		Туре		-
																	_
															_		
	0 10	20	30	40	50	MOD			90 D	100	110	120	130	0 14	0		

Figure 19 – Web Interface Main Page

Many of the fields displayed on the Main Page have link buttons in Bold to allow further monitoring detail or the entering / posting of setup data. In these setup fields, a correct user profile and password is required to make changes or to enter the field. Sections 4.1 and 8.1 detail the user profile and set up details.

You can also navigate to additional status, monitoring information, and other settings, by clicking on the link buttons located on the bottom of the Main Page.

To check the current web page version, simply point a web browser to [IP Address]/rev.htm

8.1 Login Profiles - Basic Web Page

Posting settings to the exciter or other transmitter settings in **bold** requires an appropriate login profle. If the text is not in **bold**, it is for monitoring only or it is disabled for user profiles that do not have permission to modify the setting

NOTE: The transmitter is shipped with both of the passwords set to a default of "00000000". However, as a security measure, the password "00000000" is not accepted as valid by the transmitter. The customer must change the password to something other than "00000000" before remote operation is allowed. The password can only be changed at the front panel. Refer to Section 4.1 regarding setting the passwords.

To switch user profiles, such as" Chief" or "Operator", click the "Current User" link in the upper left. of the screen and will see the Authentication dialog box pop up, as shown Figure 20. Enter the user profile name that is required and it's 8-digit numerical password and hit OK to save the setting.

AUDIO	EXCIT Authenticatic	IBE STX	e 5 STATUS	S PAGE	×	
5648 FWD PWR - W RF 98.00 Frequency - MH	18 L PWR 12:1 VN Passwort 2 PA Mode	http://10.2.4.124 is re e: d: Preemphasis 100 TRANSMITTI	OK Cancel Mod - kHz Stereo I ER DATA - 1 of 3	password. Mode Pilot	Pilot Level	-
E	AES Primary	NONE Secondary TRANSMITTI	0 Silence - Seconds ER DATA - 2 of 3	0 Audio Delay		
AES AC Audio Activi	TIVE 00000 Standby Transm	00-000 V4.3 R. itter S/N Version Co TRANSMITTI	4298 V2.3 R.3875 Nersion Exciter FPG ER DATA - 3 of 3	V2.7 R.4092 A Version Exciter DSP	STXe 5kV Type	V TX

PA STATUS EVENT LOG Internal RDS Setup SNMP MIB File GRAPHICAL INTERFACE SETTINGS HP Combiner

Figure 20 – Web Interface Authentication

8.2 Posting Setup and Operating Data

Posting transmitter setup and operating data can be made in the individual fields of the Transmitter Data lines. Depending on what field button is selected, either a Data Entry Window will open as shown Figure 21, or the field will expand and list the selection options available for that filed as shown in Figure 22.

	STX GEN 2 IE STX G	EN 2 3KW 📪 El	10.2	2.4.110 says:			3	_			
ent l	ent User:		Freq	Frequency - MHz					GE		
	AUDIO	EXCITER				OK	Cancel	AILSAFE	MUTE		
									-		
	3000 FWD PWR - W	12 RFL PWR - W	Ŷ	3000 Setpoint - W	ON ON/OFF	RESET	DISABLE	11:03:45 Time	2022-06-17 Date		
	3000 FWD PWR-W	12 RFL PWR - W 1.14:1 VSWR	î 1	3000 Setpoint - W TRANSMITTE	ON ON/OFF	RESET Fault Rese NGS/INDIC	DISABLE Preset	11:03:45 Time	2022-06-17 Date		
	3000 FWD PWR-W 98.10	12 RFL PWR-W 1.14:1 VSWR	û Q	3000 Setpoint - W TRANSMITTE NONE	ON ON/OFF R READII	RESET Fault Rese NGS/INDIC	DISABLE Preset ATIONS STEREO	11:03:45 Time	2022-06-17 Date 10.0		

Figure 21 – Data Entry Windows

In the Figure 21 example, the Frequency button has been selected and a data entry window will open and display the current operating status or data. Enter the new data and click OK to save and make the change.

Figure 22 – Expanded Views of Data Fields

In the fields requiring a predefined operating parameter to be selected, the entire Transmitter Data line will expand and the selection options will be listed for that field button that is clicked on.

Note that Figure 22 was edited for this instruction manual to show all of these predefined fields and their options. Normally, when a field button is clicked, only that field's options are displayed.

For example, in TRANSMITTER DATA 1 or 3, if you click on the PA MODE button, the options will expand for PA Mode only, along with the SET & CANCEL buttons

If you click on the Preemphisis button, the options for Preemphisis will expand only

If you click on the STEREO MODE, the options for Stereo will expand for Stereo only

Expanded fields exist for the Primary and Secondary Audio buttons in TRANSMITTER DATA 2 of 3.

After you select the option required, click on the SET button to capture, save and exist from the expanded view of the field.

The fields that are titled; Frequency, 100% Mod, Pilot, Pilot Level, Silence Seconds, and Audio Delay will all display a data entry window when that button is clicked. Additional setup information for Audio Delay are provided in section 7.5

If the correct user profile is not listed in "Current User", the Authentication widow will pop up first and after the profile is changed to the correct profile; the field's data entry window or options will be active to continue making the entry.

8.3 PA Status and Event Logs

				STXe l	PA STA	ATUS F	PAGE			
2751	25	110	1.08	28.8	22.36	23.46	22.70	22.87	50.2°	39.5
FWD PWR - W	RFL PWR - W	RF In - mW	Drv I - Amps	Driver Temp - C	Final Q1-Amps	Final Q2-Amps	Final Q3-Amps	Final Q4-Amps	Temp - C	PAV
DRIVE	VSWR	FINAL I	FOLDBK	MUTE	PA TEMP	PS	COMM	RF In		
				-	PA1 - DATA					
2749	40	101	1.02	27.7	23.79	23.49	22.53	22.31	56.9°	42.1
FWD PWR -W	RFL PWR - W	RF In -mW	Drv I - Amps	Driver Temp - C	Final Q1-Amps	Final Q2-Amps	Final Q3-Amps	Final Q4-Amps	Temp - C	PAV
DRIVE	VSWR	FINAL I	FOLDBK	MUTE	PA TEMP	PS	COMM	RF In		
					PA2 - DATA					

MAIN STATUS

Figure 23 – Web Interface PA Status Page

E	ST	TXe-EVENT	LOG		×	+			∨ – □ X
←	-	e C			10.2.4	1.110/log.htm	I		역 순 ☆ 🗯 🖬 💄 :
						BH			TLOG
MAI	NS	TATUS							1 200
STY	χο.	5kW TX							Tx Serial # 000000-000
 	t I	TIME	STAM	Þ	EVENT	SOURCE	TYPE	ΡΔΡΔΜ	DESCRIPTION
447	21	2023-03-2	8 14:1	17:40	6034	Controller	Event	0	Preset Power Off
442	20	2023-03-2	8 14:1	17:23	6034	Controller	Event	1	Preset Power On
441	19	2023-03-2	8 14:0	08:06	4026	HP Combiner	Alarm Cleared	0	HP Combiner ISO Reject Foldback Alarm Cleared
441	18	2023-03-2	8 14:0)7:55	4004	PA 2	Alarm Cleared	0	PA 2 Mute Alarm Cleared
441	17	2023-03-2	8 14:0)7:45	4026	HP Combiner	Alarm Asserted	0	HP Combiner ISO Reject Foldback Alarm Asserted
441	16	2023-03-2	8 14:0)7:45	4004	PA 2	Alarm Asserted	0	PA 2 Mute Alarm Asserted
441	15	2023-03-2	8 14:0)7:33	4026	HP Combiner	Alarm Cleared	0	HP Combiner ISO Reject Foldback Alarm Cleared
441	14	2023-03-2	8 14:0)7:22	4004	PA 2	Alarm Cleared	0	PA 2 Mute Alarm Cleared
441	13	2023-03-2	8 14:0)7:18	4004	PA 2	Alarm Asserted	0	PA 2 Mute Alarm Asserted
441	12	2023-03-2	28 14:0)7:14	4004	PA 2	Alarm Cleared	0	PA 2 Mute Alarm Cleared
441	11	2023-03-2	28 14:0)7:13	4004	PA 2	Alarm Asserted	0	PA 2 Mute Alarm Asserted
441	10	2023-03-2	28 14:0	07:09	4004	PA 2	Alarm Cleared	0	PA 2 Mute Alarm Cleared
44(09	2023-03-2	28 14:0	07:06	4026	HP Combiner	Alarm Asserted	0	HP Combiner ISO Reject Foldback Alarm Asserted
44(08	2023-03-2	28 14:0	07:06	4004	PA 2	Alarm Asserted	0	PA 2 Mute Alarm Asserted
44(07	2023-03-2	28 14:0	06:23	3010	HP Combiner	Fault Cleared	0	HP Combiner VSWR Fault Cleared
44(06	2023-03-2	28 14:0	06:23	6019	Controller	Event	0	Active
440	05	2023-03-2	28 14:0	06:20	6018	Controller	Event	0	Standby
44(04	2023-03-2	28 14:0)4:16	3010	HP Combiner	Fault Cleared	0	HP Combiner VSWR Fault Cleared
440	03	2023-03-2	28 14:0)4:16	6001	Controller	Event	0	Transmitter On
440	02	2023-03-2	3 15:4	14:23	6002	Controller	Event	0	Transmitter Off
440	01	2023-03-2	23 15:4	42:55	3010	HP Combiner	Fault Cleared	0	HP Combiner VSWR Fault Cleared
44(00	2023-03-2	23 15:4	42:55	6001	Controller	Event	0	Transmitter On
439	99	2023-03-2	23 15:4	40:06	6002	Controller	Event	0	Transmitter Off
439	98	2023-03-2	3 15:3	39:48	3010	HP Combiner	Fault Cleared	0	HP Combiner VSWR Fault Cleared

Figure 24 – Web Interface Events Page

T.

8.4 RDS and FSK Setup

To enter static RDS information or FSK ID data such as Translator Identification, use the "Internal RDS Setup" link in the bottom of the Basic Web page, to access the RDS Setup Page.

Figure 25 – Internal RDS Setup Link

DISABLED RDS Mode	0 RDS PTY	0 RDS PI	0 Alt Freq
87.6	87.6	87.6	87.6
AF 1	AF 2	AF 3	AF 4
87.6	87.6	87.6	
AF 5	AF 6	AF 7	
Radio Text	11 mil		
Program Service			
TRE RT			
TRE PS			
	RDS D	ATA	
	DISABLED FSK Mode	FSK ID	
	FSK ID	DATA	

Figure 26 – RDS Setup Page

8.5 Audio Delay Setup

This is an adjustable audio delay to help set up a single-frequency network, or a repeater station by getting the delays of the system in sync.

The audio delay sets the amount of time from when the analog/AES/AES-Comp signal arrives at the rear panel until it affects the modulation of the RF signal. The audio delay is settable with an integer number, (steps) from 0 to 8128, where each step is on the order of 5.3 micro-seconds. This correlates to a delay range from 0 to 43.7 milliseconds.

To enter a delay setting, click on the Audio Delay button above, to display the setting window in Figure 27. Enter a number calculated from the 5.3 micro-second step amount. The example below of "20" equals a delay of 106 micro-seconds.

When finished, press OK to save and exit the menu.

9 Enhanced Web GUI

STXe systems come standard with an enhanced Web GUI. This provides a more intuitive viewing and control experience than the basic web HTML while still providing all the features and more. To access this page, click the "GRAPHICAL INTERFACE" link at the bottom of the basic HTML web page.

view 2023-03-28 STXe 5kW Tx 15:22:08 Exciter Input/Output Audio Settings Main Power Amp Logs VSWR / PA FM AES Internal Exciter PA Power Controller Supply Mute Set Point FWD Power **RFL Power** Frequency Modulation Alarm / Fault 5648w 18w 98.00 MHz 5500w

Figure 28 – Link from Basic Web Page to GUI Main Page

Figure 29 - Main GUI Page

Refer to Figure 30 on the following page.

While navigating the screen pages, buttons with banded in Blue are the current settings. When the PC's mouse pointer icon comes in contact with one these buttons, it will change from the user's default mouse icon, (Arrow) to either the (Hand/Finger) icon or (Not-Allowed) icon, depending on the Login Profile

Figure 30 - GUI Pointer Icons

9.1 Login Profiles – GUI Web Page

The default login profile is "View". This does not require a password and allows monitoring only. Basic control of system power is allowed with the "Operator" profile. Full control of all settings that can be modified through the web interface requires the "Chief" login profile.

To change the login profile, move cursor into the "view" button and a popup window will display, [click to change Logged in status] as in Figure A. The previous screen being displayed will change to that in Figure B. Move cursor into the desired profile. In this example "Chief" is being selected

Figure 31 – GUI Login Selection

Next, a dialog box will pop up requesting password entry. Change browser settings if this dialog box is being blocked by the browser. Enter the password and press enter or click Save and the process displayed will move to "Pending", followed by "Logged in"

Figure 32 – GUI Login Process

9.2 Navigation

The primary screen pages in the GUI can be accessed by clicking on the text in the Navigation Bar near the top of the page in Figure 33.

Figure 33 – GUI Navigation Bar

9.2.1 Features & Items Always-Displayed Items

The Navigation Bar above as well 12 specific items identified in Figure 34 and Table 4 are displayed in all screens

Figure 34 – Common Features & Items Displayed in all Screens

Feature	Description
STX System Type	Currently configured hardware setup type. This is
	determined during initial setup of the system, and
	might be 1kW, 2kW, or 3kW, TX (transmitter).
Date and Time	Real time clock data configured during setup.
Login Profile	Active login status displayed as View, Operator, or
	Chief and control button to change profile
Transmitter ON/OFF	ON/OFF status of the final RF output (not just the
	control status). Transmitter setups allow RF to be
	turned on and off with sufficient login level.
Preset	Provides a secondary APC setpoint for setting power to
	a lower power level. When Preset is Enabled the
	setpoint is for the Preset APC setpoint
System Block Diagram	Overall system status. Green, amber, and red block
	colors correspond to front panel LED behaviors. See
	section 5 STXe3-Main Front Features for details.
Power Control Set Point	Forward power value that automatic power control
	attempts to converge to. Note that exciter setups do
	not rely on this. External power control from a
	transmitter is utilized instead.
Forward Power	Internally measured system forward RF power output
	reading.
Reflected Power	Internally measured system reflected RF power reading.
Frequency	FM carrier frequency setting.
Modulation	Internal frequency modulation peak hold as a
	percentage of peak deviation from nominal frequency.
Fault/Alarm	System faults cause this to display red, and alarms in
	the system cause this to display amber. Check the Logs
	page for details.
	FeatureSTX System TypeDate and TimeLogin ProfileTransmitter ON/OFFPresetSystem Block DiagramPower Control Set PointForward PowerFrequencyModulationFault/Alarm

Table 4 – Common Features & Items Displayed in all Screens

9.2.2 Block Diagram used for Navigation

In the screens with a System Block Diagram, many of the block figures will also provide navigation to its corresponding screen. Clicking the PA amp block as shown below will take you to the PA Amplifier screen

9.3 Power Amplifier

The power amplifier page contains detailed status information for all power amplifiers in the system.

#	Feature	Description				
1.	Forward Power	PA forward RF power output reading. This is also the				
	FWD PWR (W)	system forward output power in 1kW systems.				
2.	Reflected Power	PA reflected RF power reading. This is also the system				
	RFL PWR (W)	reflected power in single-PA 1kW systems.				
3.	RF Input Power	PA RF drive input power reading in mili-Watts.				
	RF In (mVV)					
4.	Driver Current	Current in Amperes for the driver stage RF power				
	Driver (A)	amplifier.				
5.	Driver Temperature	Internal heat sink temperature measurement of the RF				
	Temperature (C)	driver stage.				
6.	Final Currents	The current of each RF pallet used in the final PA Stage				
	Final (A)	is measured in Amperes. By clicking on this bar, the 4				
		current readings will be displayed.				
7.	Temperature	Internal heat sink temperature measurement of final				
	Temperature (C)	PA stage.				
8.	PAV	Final amplifier drain voltage. This variable voltage				
	PAV (V)	supply is sourced from the PA power supply.				
9.	Status Balloons	Fault and alarm indications for the PA. These will be				
		red, yellow or green depending on the status of each				

r Amplifier Display

Figure 36 – Exciter Display Details

Table 6 – E	xciter Page	Features
-------------	-------------	----------

#	Feature	Description
1.	Primary	Primary audio input source selection. Choose one of
		the listed options. Composite ignores stereo generation
		settings.
2.	Pre-emph	Pre-emphasis setting for internal stereo generation.
3.	Stereo	Mono/stereo setting for stereo generation.
4.	Pilot	19 kHz pilot on/off and level controls. This
		automatically updates with changes to the
		mono/stereo setting. Can be controlled independently.
5.	Modulation	Frequency deviation amount in kilohertz from nominal
		carrier frequency. This setting represents 100% peak
		frequency modulation.
6.	Secondary	Secondary Audio input source selections. Choose one
		of the listed options.
7.	Transmitter Power	Automatic power control set point. Transmitter mode
		setups attempt to regulate total system forward output
		power to this value.
8.	Frequency	Nominal FM carrier frequency.
9.	Silence Timeout	Time allowed before loss of primary audio source
		switches to secondary audio source.

9.5 Input/Output

=	EST	Xe	STXe 5kW	Tx	2023-03 15:27	-28 📟 :25	ed in as chief
Mai	n Power Amp	D Exciter	Input/Output	AL	idio Setting	5	Logs
Pin #	Input Description	Status		Pin #	Output Description	Status	
2	Failsafe Input	1		15	Total Reflected Power (analog)	0.90	
5	Mute Input	0		16	Total PA Current (analog)	5.00	
11	Reserved 1	0		17	PA Temperature (analog)	2.51	1
13	Reserved 2	0		20	System Fault Status	0	
14	VPe System Present	0		21	VSWR Alarm Status	0	
				22	Transmitter On Status	1	
			10	23	Transmitter Off Status	0	
				24	Mute Status	0	
				25	AFC Lock Status	1	
				26	Audio Select 1	1	
				27	Preset Status	0	
				28	Audio Select 0	0	
				29	PA(n) Forward Power (analog)	0.00	
				30	PA(n) Reflected Power (analog)	0.00	
				33	Total Forward Power (analog)	4.28	
				34	PA(n) PA Voltage (analog)	3.95	
Set Point	FWD Power	RFL Power Fi	requency		Modulation		Alarm / Fault
5500	w 5648w	18w 98	8.00 мнг)				RESET

Figure 37 – I/O Display Details

The Input/Output page contains information for connections on the GPIO connector pins, shown in the left columns. These connections may be used for machine interfaces with remote station controllers/monitors or with other transmission system equipment. Refer to section 5.1 for detailed function descriptions.

Figure 38 – Audio Display Details

Table 7 – Audio Page Feature	s
------------------------------	---

#	Feature	Description
1.	Source	Audio input source selection. Choose one of the listed
		options. This duplicates function in the Exciter page.
2.	Gain	Gain settings for hardware amplification/attenuation.
		AES gain is a digital scale factor.
3.	Stereo Injection Scale	Allows the stereo composite to be scaled down to
		balance modulation budget without changing gain
		calibration setup. This also scales pilot when in stereo.
4.	Modulation	Peak holds for inputs displayed as effective % of peak
		modulation. Composite Mod includes Unbalanced
		Composite, SCA1, SCA2, and RDS inputs.
5.	SCA 1, and SCA 2	Allows on/off control and input hardware
		amplification/attenuation adjustment.
6.	RDS	Allows on/off for an external RDS or mode control of
		the internal RDS, (Static vs From TRE)

ונ	2 3][4]]	5	6 7	8
Mai) vent#	Pov er Am	p E Code	xciter _{Source}	Inpu 70u	tput Parameter	Audio Settings	Logs
4423	2023-03-28 15:38:53	6034	Controller	Event	0	Preset Power Off	CLEAR
4422	2023-03-28 15:38:35	6034	Controller	Event	1	Preset Power On	•
4421	2023-03-28 14:17:40	6034	Controller	Event	Q	Preset Power Off	Serial Number
4420	2023-03-28 14:17:23	6034	Controller	Event	1	Preset Power On	S/N: 000000-000
4419	2023-03-28 14:08:06	4026	HP Combiner	Alarm Cleared	0	HP Combiner ISO Reject Foldback Alarm Cared	MAC: D8:80:39:DB:9D:F1
4418	2023-03-28 14:07:55	4004	PA 2	Alarm Cleared	0	PA 2 Mute Alarm Clearer	
4417	2023-03-28 14:07:45	4026	HP Combiner	Alarm Asserted	0	HP Combiner ISO Reject Fold	
4416	2023-03-28 14:07:45	4004	PA 2	Alarm Asserted	0	PA 2 Mute A' .m Asserted	Software versions
4415	2023-03-28 14:07:33	4026	HP Combiner	Alarm Cleared	0	HP Combiner ISO eject Foldback Alarm Cleared	Ctrl: V4.3 R.4298
4414	2023-03-28 14:07:22	4004	PA 2	Alarm Cleared		A 2 Mute Alarm Cleared	FPGA: V2.3 R.3875
4413	2023-03-28 14:07:18	4004	PA 2	Alarm Asserte	10	PA 2 Mute Alarm Asserted	DSP: V2.7 R.4092
4412	2023-03-28 14:07:14	4004	PA 2	Alarm Cleared	10	PA 2 Mute Alarm Cleared	FP: V4.3 4298
4411	2023-03-28 14:07:13	4004	PA 2	Alarm Asserted	0	PA 2 Mu	PA: V4.3 4298
4410	2023-03-28 14:07:09	4004	PA 2	Alarm Cleared	0	ра 2 м 11	Comb: N/A
4409	2023-03-28 14:07:06	4026	HP Combiner	Alarm Asserted	0	HP Combiner ISO R	VPe: N/A

Figure 39 – Logs Display Details

#	Feature	Description
1.	Event #	Event index number. Initially (or after a clear) this starts at 0 and increments for every event. If the log fills, half of the current entries are deleted and numbering resumes. When 65535 entries are created, the log clears itself.
2.	Time Stamp	Date and time of the event based on the system's internal real time clock and calendar.
3.	Type Code	Unique event type identification number.
4.	Source	Controller node from which the entry was triggered.
5.	Туре	Type category identification in a readable format.
6.	Parameter	Event-specific value for logging some changes.
7.	Full Description	Log entry details in a readable format.
8.	Scroll	Click the up and down arrows to scroll through the log.
9.	Clear	Wipes all log entries from memory forever. NOTE: Only displays when in the "Chief" login profile.
10.	Serial Number	Displays BE serial number and controller Ethernet MAC.
11.	Software Versions	Listing of all viewable software versions in the system.

9.8 Other Features - VSWR vs Reflected Power

Another feature added to this revision of GUI is the choice to either display Reflected Power or VSWR shown in Figure 40. The display can be toggled to either mode with proper login profile.

Figure 40 – VSWR or Reflected Power Display

On many of the bar graph displays such as the ones used in the Power Amp screen a triangle maker is used to mark the reading measured in the transmitter as in the circled examples on the right in Figure 41. If you click on a bar, then the actual reading is displayed as circled on the left of Figure 41.

Figure 41 - Bar Graph Options

10 SNMP

Simple Network Management Protocol is a member of the Internet Protocol standard communications suite. The STXe comes with a built-in SNMP agent (SNMP version 2c) for handling all request types included in the protocol – GET, SET, GETNEXT, and GETBULK. The appropriate MIB for the version of SNMP agent installed on the transmitter must be downloaded from the transmitter itself. As with any MIB, this ASCII text file completely defines the data structure within the agent. The MIB also provides textual descriptions for every accessible object.

SNMP IS FOR ADVANCED APPLICATION INTEGRATION. THIRD PARTY APPLICATIONS THAT UTILIZE THE SNMP INTERFACE ARE NOT SUPPORTED BY BE.

To download the file access the web interface using a standard web browser. Right click on the link titled "SNMP MIB File" and then "Save link as...", a local copy of the MIB file wherever desired for use in an SNMP manager application. Alternatively, click the link and navigate to the file in the browser. Right click anywhere in the viewing space and click "Save as..." Simply remove the .txt extension (leaving only the .mib extension) and save at the desired location.

An SNMP manager application must be utilized in order to access the interface. Integrating a manager into custom station automation programs provides countless possibilities. Alternatively, various third party MIB browser GUI applications are available for free download; however Broadcast Electronics does not endorse any specific application. Simply direct the manager to the Ethernet port for communication across a network.

10.1 Authentication

Data is accessible by using the correct community strings for the desired login level. The formula for these strings is a combination of the login type – chief, user, or operator –, a delimitating '+' character, and the 8 digit numerical password associated with that login type. For example, "chief+12345678" in both the read community and write community passes authentication and allows read and write to essentially every object in the MIB with the appropriate max-access type. User and Operator login types provide more strict control over what settings can be modified and commands issued in the system.

10.2 Objects

The SNMP interface utilizes tables wherever it makes sense to communicate data in an indexed fashion. To accommodate a scalable transmitter product design, for example, almost all PA data is structured as tables by using the PA number as the index. This works by appending ".#" to the object where # is the PA number. Note that a normal "leaf" node is accessed by appending ".0" as in ...38118.2.2.2.0, the object for system forward power.

74

11 Troubleshooting

Some basic information and troubleshooting steps are included below. If problems persist after basic troubleshooting steps are taken, please contact RF Technical Services. Contact information is located on our website at www.bdcast.com and on page iii in the front of this manual.

A fault in any part of the system indicates a complete disruption in normal operation of at least one part of the transmitter system. Once the problem has been identified, a fault reset command should always be issued through diagnostics in any user interface to attempt to recover from fault conditions. If the reset is not successful or a condition that caused a fault still remains, the fault will re-assert.

An alarm typically indicates an abnormal condition that represents a disruption that may resolve itself. Alarms in unexpected situations could indicate serious conditions. Alarms that persist for long periods of time or unexpectedly appear on a regular basis should not be ignored. To get a good feel for what alarms are expended under which conditions, see the alarm details in the sections that follow.

11.1 Event Log

The system event log can be accessed through the web interface log page or in its raw form through the event Log tree in SNMP. An event is defined by its index starting with the first saved event at index 1, a timestamp from the system's internal real time clock, an event identification number, and the sub-system where the event triggered. Some events also have context-based parameters that are embedded in the description of the event.

11.2 Standby

The STXe Control Unit comes with built-in functionality for a standby exciter –. A system that is in standby is muted and not actively controlling the transmitter. This mode is not intended the basic STXe 5 configuration which has a single system controller and exciter. Standby system control and exciter setups should also be able to have no more than one unit active at a time.

11.3 Failsafe

An asserted failsafe input on the remote station interface is required for operation of the system. The intended usage of this input is to make a loop that passes through safety relays in all critical transmission system components. When any part of the transmission system becomes unsafe, the circuit should open and de-assert the failsafe on the transmitter. When a failsafe condition is active, check all systems that are wired into the failsafe circuit.

11.4 Mute

A mute generally refers to a lack of an RF source in some part of the system, and the affected part depends on the context of the notification. Mute indications can happen at various stages for different reasons, and details in system sections listed here should be considered.

Transmitter mute conditions typically refer to the FM exciter. In internal exciters this commonly occurs when:

- There is no power to the exciter
- The transmitter is turned off
- The mute GPIO input pin on the remote station interface is asserted
- Unmute/Failsafe GPIO input is not asserted
- The BE Interface active input is not asserted
- VPeXG setup presence GPIO input is active when no VPeXG is in the system, or is not activated when it is in the system.

11.5 Internal Exciter Diagnostics

Table 8 – Exciter Diagnostics Details

Fault/Alarm	Description
Communication Fault	This fault occurs when communication between the system
	controller and the internal exciter is nonfunctional.
AFC Unlock Alarm	Automatic frequency control system does not yet have lock.
10MHz Status	Displays INT when exciter is on the Internal reference or EXT for
	when an External reference is used.
Audio SCR Status	Secondary (SCR) Audio displays PRI for primary audio or SEC for
	secondary audio

11.6 Power Amplifier Diagnostics

Table 9 – PA Diagnostics Details

Fault/Alarm	Description
RF Power Supply Fault	This fault activates when a power source failure is detected.
Reflected Power Fault	This fault activates when a sudden increase in reflected power
	is detected by hardware in the power amplifier.
VSWR Fault	This fault activates when the measured VSWR is greater than
	the maximum VSWR rating of the system at any power level.
Temperature Fault	This fault activates when the measured internal heat sink
	temperature exceeds the safe limit.
Current Fault	There is current monitoring on the final stage RF amplifiers. The
	PA shuts down when measured current on any of these solid
	state amplifiers exceeds the safe limit.
Hardware Fault	This is an internal self-report of problems in PA control
	hardware.
Communication Fault	This fault occurs when communication between the system
	controller and the PA is lost.
Power Supply DC Alarm	This alarm is asserted when there is a fault with the DC power
	regulator. It will occur if any of the regulated DC voltages are
	outside acceptable levels. This alarm will not occur when the PA
	is turned off for any reason, e.g. when the transmitter RF is off.
Reflected Power	During FM only operation, the PA attempts to lower its output
Foldback Alarm	power when reflected power approaches dangerous levels. This
	keeps the transmitter running at reduced power in order to
	prevent a reflected power fault.

Fault/Alarm	Description
Temperature Foldback	During FM only operation, the PA attempts to lower its output
Alarm	power when the internal heat sink temperature approaches
	dangerous levels. This keeps the transmitter running at reduced
	power in order to prevent a temperature fault.
Current Foldback Alarm	During FM only operation, the PA attempts to lower its output
	power when the worst case final power transistor current
	approaches dangerous levels. This keeps the transmitter
	running at reduced power in order to prevent a current fault.
Muted Input Alarm	This alarm is asserted when in FM-only mode and the RF power
	from the Exciter to the PA is below the minimum threshold for
	safe operation. This alarm is not reported when the PA is
	turned off for any reason.
Railed Alarm	During FM-only operation this indicates a condition where
	automatic power control has reached its highest or lowest
	possible control value indicating that the transmitter cannot
	reach the RF power set-point. The power control system
	automatically leaves this state if the condition is resolved.

12 Appendix

12.1 Website

For electronic copies of these and other Broadcast Electronics technical documentation please visit http://www.bdcast.com/information-center/. In addition to this main manual, check the web site for Application Guides such as the STX CPE Software Update Application Guide 597-4200 for software and firmware update details.

12.2 Default Operation & Settings

In the absence of specific customer settings or when a reset to factory defaults command is issued on the front panel user interface, the following default settings are used:

Transmitter RF On/Off – Off Frequency - 98.1 MHz Operating Mode – FM Only FM-only Power Set point – 5000W Digital-only Power Set point – 1020W FM+Digital Power Set point - 2310W Sideband power level – -20 dBc Digital PAV - 44.0V Emergency Output Power – 0 W (disabled) 100% Modulation – 75 kHz Pre-emphasis - None Pilot Injection – On, 10% Mono/Stereo Mode - Stereo Audio Input - Composite AES – -2dBFS input level AES Stereo injection - 100% Analog L – -2.5 dB input gain Analog R – -2.5 dB input gain Analog L/R Stereo injection – 100% Composite - +8.0 dB input gain SCA1 0 Off -12.0 dB input gain 0 SCA2 o Off o -12.0 dB input gain

RDS – Off, -12.0 dB input gain

- o Off
- o -12.0 dB input gain

Real Time Clock – shipped with Quincy, IL time, factory reset does not affect this Note: The internal real time clock is likely to have stopped keeping time and reset to 2000-01-01 00:00:00 during shipping or any other time when the system is unpowered for days

