

Broadcast Electronics

4100 North 24th Street, Quincy, Illinois 62305 USA • Phone (217) 224-9600 • Fax (217) 224-9607 • www.bdcast.com • bdcast@bdcast.com

STXe 500 Watt FM Exciter Technical Manual

597-4063 Revision F June 25, 2018

STXe 500 Watt FM Exciter Technical Manual

©2018 Broadcast Electronics all rights reserved.

The information in this publication is subject to improvement and change without notice. Although every effort is made to ensure the accuracy of the information in this manual, Broadcast Electronics accepts no responsibility for any errors or omissions. Broadcast Electronics reserves the right to modify and improve the design and specifications of the equipment in this manual without notice. Any modifications shall not adversely affect performance of the equipment so modified.

Proprietary Notice

This document contains proprietary data of Broadcast Electronics. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, translated into any other language in any form or by any means, electronic or mechanical, including photocopying or recording, for any purpose, without the express written permission of Broadcast Electronics.

Trademarks

Broadcast Electronics and the BE logo are registered trademarks of Broadcast Electronics.

Marti Electronics and the Marti logo are registered trademarks of Broadcast Electronics.

All other trademarks are property of their respective owners.

Copyright

Copyright laws protect artwork depicting circuitry in this manual.

Information in this manual is subject to change without notice and does not represent a commitment on the part of Broadcast Electronics.

Broadcast Electronics may make improvements and/or changes in this manual or in the product described herein at any time.

This product could include technical inaccuracies or typographical errors.

Broadcast Electronics Product Warranty (Two-Year Limited)

Broadcast Electronics hereby warrants all new products manufactured by Broadcast Electronics against any defects in material or workmanship at the time of delivery thereof, or that develop under normal use within a period of two (2) years from the date of shipment.

Broadcast Electronics reserves the right to repair equipment under warranty with new or refurbished equipment or parts. Broadcast Electronics' sole responsibility, with respect to any equipment or parts not conforming to this warranty, is to replace or repair such equipment upon the return thereof F.O.B. to Broadcast Electronics' factory in Quincy, Illinois, U.S.A. In the event of replacement pursuant to the foregoing warranty, only the unexpired portion of the warranty from the time of the original purchase will remain in effect for any such replacement.

This warranty shall exclude the following products, component parts and/or assemblies:

- (a) Transmitter power output tubes shall only carry the original manufacturers' or suppliers' standard warranty in effect on their original shipment date.
- (b) All computers, computer peripherals, cables, hard disk drives, etc., shall only carry the manufacturers' or suppliers' standard warranty in effect on their original shipment date.
- (c) "Components", defined as separate and individual parts (e.g. transistors, integrated circuits, capacitors, resistors, inductors, fans, etc.), resold by Broadcast Electronics from another manufacturer or supplier, shall only carry a 90-day warranty, effective the date of shipment. Any such "Components" being returned for warranty claim must be (1) returned in their original packaging and (2) must be in new, unused condition. Broadcast Electronics is unable to process or resolve component defects or performance concerns on components that have been soldered, installed, wired or in any way altered from their new condition.
- "Resale Equipment", defined as equipment purchased from another manufacturer or supplier, then resold by Broadcast Electronics, shall only carry such manufacturer's or suppliers' standard warranty in effect as of the original shipment date. All warranty claims against any and all "resale equipment" sold by Broadcast Electronics must be filed directly with the original equipment manufacturer. Broadcast Electronics is unable to process or resolve equipment defects or performance concerns on products or services not manufactured by Broadcast Electronics.

This warranty shall not extend to claims resulting from any acts of God, terrorism, war, defects or failures caused by Purchaser or user abuse or misuse, operator error, or unauthorized attempts to repair or alter the equipment in any way.

Under no circumstances shall Broadcast Electronics be responsible for indirect, incidental or consequential damages, including, but not limited to transportation costs, non-authorized repair or service costs, downtime costs, costs for substituting equipment or loss of anticipated profits or revenue incurred by Purchaser, whether based in contract, tort or for negligence or breach of statutory duty or otherwise. The terms of the foregoing warranty shall be null and void if the equipment has been altered or repaired without specific written authorization from Broadcast Electronics, or if not installed according to Broadcast Electronics' instruction manuals, including, but not limited to, the absence of proper grounding, surge (TVSS) protection on the AC circuit panel or proper lightning protection/grounding on all output circuits, or if equipment is operated under environmental conditions or circumstances other than those specifically described in Broadcast Electronics' product literature or instruction manual which accompany the equipment. The warranty shall be voided if the product or subassembly is equipped with a tamper seal and that tamper seal is broken. Broadcast Electronics shall not be liable for any expense of any nature whatsoever incurred

this warranty. If the equipment is described as "used" equipment, it is sold as is and where is and no warranty applies unless authorized in writing.

EXCEPT AS SET FORTH HEREIN, AS TO TITLE AND AS SPECIFICALLY REQUIRED BY LAW, THERE ARE NO OTHER WARRANTIES, OR ANY AFFIRMATIONS OF FACT OR PROMISES BY BROADCAST ELECTRONICS, WITH REFERENCE TO THE EQUIPMENT, OR TO MERCHANTABILITY, FITNESS FOR A PARTICULAR APPLICATION, SIGNAL COVERAGE, INFRINGEMENT, OR OTHERWISE, WHICH EXTEND BEYOND THE DESCRIPTION OF THE EQUIPMENT ON THE FACE HEREOF.

IMPORTANT INFORMATION

EQUIPMENT LOST OR DAMAGED IN TRANSIT

When delivering the equipment to you, the truck driver or carriers' agent will present a receipt for your signature. Do not sign it until you have:

1) Inspected the containers for visible signs of damage and 2) Counted the containers and compared with the amount shown on the shipping papers. If a shortage or evidence of damage is noted, insist that notation to that effect be made on the shipping papers before you sign them.

Further, after receiving the equipment, unpack it and inspect thoroughly for concealed damage. If concealed damage is discovered, immediately notify the carrier, confirming the notification in writing, and secure an inspection report. This item should be unpacked and inspected for damage WITHIN 15 DAYS after receipt. Claims for loss or damage will not be honored without proper notification of inspection by the carrier.

RF PRODUCT TECHNICAL ASSISTANCE, REPAIR SERVICE, PARTS -

Technical assistance is available from Broadcast Electronics by letter, prepaid telephone or E-mail. Do not return any merchandise without first contacting Broadcast Electronics and receiving prior written approval and a Return Authorization. We will provide special shipping instructions and a code number that will assure proper handling and prompt issuance of credit. Please furnish complete details as to the circumstances and reasons when requesting return of merchandise. Equipment requiring repair or overhaul should be sent by common carrier, prepaid, insured, and well protected. If proper shipping materials are not available, contact the RF Technical Services department for a shipping container. We can assume no liability for inbound damage, and necessary repairs become the obligation of the shipper. All returned merchandise must be sent freight prepaid and properly insured by the customer

Emergency and warranty replacement parts may be ordered from the following address. Be sure to include the equipment model number, serial number, part description, and part number. Non-emergency replacement parts may be ordered directly from the Broadcast Electronics stock room (see next page.)

RF TECHNICAL SERVICES

Telephone: +1 (217) 224-9617 E-Mail: <u>rfservice@bdcast.com</u> Fax: +1 (217) 224-6258

FACILITY CONTACTS

Broadcast Electronics, - Quincy Facility 4100 N. 24th St. P.O. BOX 3606 Quincy, Illinois 62305 Telephone: +1 (217) 224-9600 Fax: +1 (217) 224-6258 General E-Mail: <u>bdcast@bdcast.com</u> Web Site: <u>www.bdcast.com</u>

PARTS

Telephone: +1 (217) 224-9617 E-Mail: <u>parts@bdcast.com</u>

RETURN, REPAIR, AND EXCHANGES

Do not return any merchandise without our written approval and Return Authorization. We will provide special shipping instructions and a code number that will assure proper handling and prompt issuance of credit. Please furnish complete details as to circumstances and reasons when requesting return of merchandise. All returned merchandise must be sent freight prepaid and properly insured by the customer.

MODIFICATIONS

Broadcast Electronics, reserves the right to modify the design and specifications of the equipment in this manual without notice. Any modifications shall not adversely affect performance of the equipment so modified.

SAFETY PRECAUTIONS

PLEASE READ AND OBSERVE ALL SAFETY PRECAUTIONS

ALL PERSONS WHO WORK WITH OR ARE EXPOSED TO POWER TUBES, POWER TRANSISTORS, OR EQUIPMENT THAT UTILIZES SUCH DEVICES MUST TAKE PRECAUTIONS TO PROTECT THEMSELVES AGAINST POSSIBLE SERIOUS BODILY INJURY. EXERCISE EXTREME CARE AROUND SUCH PRODUCTS. UNINFORMED OR CARELESS OPERATION OF THESE DEVICES CAN RESULT IN POOR PERFORMANCE, DAMAGE TO THE DEVICE OR PROPERTY, SERIOUS BODILY INJURY, AND POSSIBLY DEATH!!

DANGEROUS HAZARDS EXIST IN THE OPERATION OF POWER TUBES AND POWER TRANSISTORS

The operation of power tubes and power transistors involves one or more of the following hazards, any one of which, in the absence of safe operating practices and precautions, could result in serious harm to personnel.

- **A. HIGH VOLTAGE -** Normal operating voltages can be deadly. Additional information follows.
- **B. RF RADIATION -** Exposure to RF radiation may cause serious bodily injury possibly resulting in blindness or death. Cardiac pacemakers may be affected. Additional information follows.
- **C. HOT SURFACES -** Surfaces of air-cooled radiators and other parts of tubes can reach temperatures of several hundred degrees centigrade and cause serious burns if touched. Additional information follows.
- **D. RF BURNS -** Circuit boards with RF power transistors contain high RF potentials. Do not operate an RF power module with the cover removed.

HIGH VOLTAGE

Many power circuits operate at voltages high enough to kill through electrocution. Personnel should disconnect the primary AC Power when accessing the inside of the transmitter.

RADIO FREQUENCY RADIATION

Exposure of personnel to RF radiation should be minimized, Personnel should not be permitted in the vicinity of open energized RF generating circuits, or RF transmission systems (waveguides, cables, connectors, etc.), or energized antennas. It is generally accepted that exposure to "high levels" of radiation can result in severe bodily injury including blindness. Cardiac pacemakers may be affected.

The effect of prolonged exposure to "low level" RF radiation continues to be a subject of investigation and controversy. It is generally agreed that prolonged exposure of personnel to RF radiation should be limited to an absolute minimum. It is also generally agreed that exposure should be reduced in working areas where personnel heat load is above normal. A 10 mW/cm² per one tenth hour average level has been adopted by several U.S. government agencies including the Occupational Safety and Health Administration (OSHA) as the standard protection guide for employee work environments. An even stricter standard is recommended by the American National Standards Institute which recommends a 1.0 mW/cm² per one tenth hour average level exposure between 30 Hz and 300 MHz as the standard employee protection guide (ANSI C95.1-1982).

RF energy must be contained properly by shielding and transmission lines. All input and output RF connections, such as cables, flanges and gaskets must be RF leak proof. Never operate a power tube without a properly matched RF energy absorbing load attached. Never look into or expose any part of the body to an antenna or open RF generating tube or circuit or RF transmission system while energized. Monitor the tube and RF system for RF radiation leakage at regular intervals and after servicing.

HOT SURFACES

The power components in the transmitter are cooled by forced-air and natural convection. When handling any components of the transmitter after it has been in operation, caution must always be taken to ensure that the component is cool enough to handle without injury.

vi

Table of Contents

1	Overv	/iew	1
	1.1	Instructions	. 1
	1.2	Other Documents	. 1
	1.3	Installation and Initial Setup Summary	. 1
	1.4	Product Specifications	. 2
	1.5	Default Operation	. 7
2	Prepa	ring to Install	9
	2.1	Verify Contents of Shipment	. 9
	2.2	Items Sold Separately or Not Supplied	10
	2.3	Tools and Materials	
	2.4	Estimated Time for Installation	10
3	Instal	lation and Initial Setup	
	3.1	Install in Rack	
	3.2	Exciter PA RF Drive	11
	3.3	Transmitter RF	12
	3.4	AC Power	
	3.5	Broadcast Electronics-Interface Active Stub	
	3.6	GPIO and Exciter-Transmitter Integration	
	3.7	Turn on AC	
	3.8	Time and Date	
	3.9	Frequency	
	3.10	100% Peak Modulation	
	3.11	Power Set point	
	3.12	Primary Audio Source	
	3.13	Exciter-Transmitter Integration Settings	
	3.14	Turn RF Transmission On	
4	-	nal Installation Steps	
	4.1	Additional Program Services	
	4.2	Ethernet/IP Network	
	4.3	Password	
	4.4	Stereo Generation and Stereo Pilot Injection	
	4.5	Pre-Emphasis	
	4.6	Secondary Audio and Silence Timeout	39
5		Panel Connections	
	5.1	GPIO	
	5.2	Broadcast Electronics INTERFACE	
	5.3	ETHERNET	
	5.4	COM IN	
	5.5	COM OUT	
	5.6	AES	
	5.7	LEFT and RIGHT	
	5.8	COMP	
	5.9	SCA1 and SCA2	
	5.10	RDS	
	5.11	19 kHz OUT	
	5.12	EXC RF OUT	
	5.13	PA RF IN	
	5.14	RF SAMPLE	
	5.15	RF OUT	
	5.16	10 MHz IN	
	5.17	1 PPS IN	45

	F 40		45
	5.18	Extended I/O	
	5.19	Power Switch	
	5.20	Ground	
	5.21	AC Input	46
6	Front	Panel Features	47
	6.1	AUDIO	47
	6.2	EXC DRV	47
	6.3	CNTL	48
	6.4	РА	48
	6.5	PS	48
	6.6	VSWR	
	6.7	FAILSAFE	
	6.8	TRANSMITTER CONTROL CENTER	
7		y of Operation	
8		nitter Control Center	
0	8.1	Contrast Control	
	8.2	f Left Button	
	8.3		
		g Right Button	
	8.4	h Up Button	
	8.5	i Down Button	
~	8.6	8 Return Button	
9		Neb Page	
	9.1	RDS and FSK Setup	
	9.2	Audio Delay Setup	
10		ced Web GUI	
	10.1	Login	
	10.2	Navigation	
	10.3	Power Amplifier	
	10.4	Exciter	
	10.5	Input/Output	70
	10.6	Audio	71
	10.7	Logs	72
11	SNMP		73
	11.1	Authentication	73
	11.2	Objects	73
12	Backu	p Control Modes	74
	12.1	Emergency Control Mode	
	12.2	Standby System Control and Exciter	
13	Troub	leshooting	
	13.1	Event Log	
	13.2	Standby	
	13.3	Failsafe	
	13.4	Mute	
	13.5	Internal Exciter Diagnostics	
	13.6	Power Amplifier Diagnostics	
14		enance	
. 7	14.1	Clean the Air Filter and Check Fans	
	14.1	Remove the Top Cover	
	14.2	Main Power Supply	
	14.3 14.4	AC Switch	
	14.4 14.5		
		AC Input and EMI Filter	
	14.6	Fan Power Supply	
	14.7	Fan	9 0

Fuse – DC Regulator	
DC Regulator	
Fuse – Low Voltage	
Fuse – Driver Power Amplifier	
Fuse – Final Power Amplifier	
Drive Power Amplifier Part	
Final Power Amplifier Part	102
Final Power Amplifier Palate	105
Power Amplifier and Low Pass Filter Assembly	107
Front Panel Display	114
Extended I/O	
Controller Exciter	117
	Fuse – Low Voltage Fuse – Driver Power Amplifier Fuse – Final Power Amplifier Drive Power Amplifier Part Final Power Amplifier Part Final Power Amplifier Palate Power Amplifier and Low Pass Filter Assembly Front Panel Display

Figure 1 – STXe 500	2
Figure 2 – Rack Mounting	
Figure 3 – Exciter RF	
Figure 4 –RF Output	12
Figure 5 – AC Power Input	
Figure 6 – Active Stub	13
Figure 7 – Failsafe to Ground	14
Figure 8 – D-Sub Shell Half	14
Figure 9 – D-Sub Shell Whole and Nuts	14
Figure 10 – GPIO Connector	15
Figure 11 – 949-4161 Extended I/O Exciter-Transmitter Cable Harness	. 16
Figure 12 – Extended I/O Jumper Settings	17
Figure 13 – Extended I/O Cable Harness	18
Figure 14 – Extended I/O Harness GPIO Connection	18
Figure 15 - Rear Panel Features	40
Figure 16 - Standard D-Sub 37 Connector Numbering	41
Figure 17 – Front Panel	47
Figure 18 – STXe 500 System Block Diagram	51
Figure 19 – Transmitter Control Center	
Figure 20 – Transmitter Control Center Menus Sheet 1	
Figure 21 – Transmitter Control Center Menus Sheet 2	57
Figure 22 – Basic Web Interface Main Page	
Figure 23 – Basic Web Interface Authentication	60
Figure 24 – Basic Web Interface PA Page	60
Figure 25 – Basic Web Interface Events Page	
Figure 26 – Internal RDS Setup Link	61
Figure 27 – RDS Setup Page	
Figure 28 – Audio Delay Web Interface	
Figure 29 – Link from Basic Page to GUI Main Page	
Figure 30 – Enhanced Web Page	
Figure 31 – GUI Pointer Icons	
Figure 32 – Login Profile Selection	
Figure 33 – Password and Log In Window	
Figure 34 – Profile Logged Out	
Figure 35 – Navigation Bar	
Figure 36 – Main Screen	
Figure 37 – Block Diagram for Navigation	
Figure 38 – Power Amplifier Page	67
Figure 39 - REF Power vs VSWR Feature	
Figure 40 – Exciter Page	
Figure 41 – Input/Output Page	
Figure 42 – Audio Page	
Figure 43 – Logs Page	
Figure 44 – SNMP MIB Download	
Figure 45 – Air Filter Removal	
Figure 46 – Separated Air Filter	
Figure 47 – Top Cover	
Figure 48 – Main Power Supply	
Figure 49 – Main PS Wires	
Figure 50 – Main PS Chassis Screws	
Figure 51 – Main PS Internal Thumb Screws	81

Figure 52 – Main PS Extraction	81
Figure 53 – Main PS Chassis Section	81
Figure 54 – AC Switch	82
Figure 55 – Back Panel Screws	82
Figure 56 – N-Type Connector Nut	83
Figure 57 – BNC Connector Nut	
Figure 58 – CPE Screws and Snaps	83
Figure 59 – Displaced Back Panel Assembly	
Figure 60 – AC Switch Tabs	
Figure 61 – AC Switch Wires	
Figure 62 – AC Input Replacement Parts	
Figure 63 – AC Cable Tie	
Figure 64 – Cut Shrink Wrap	
Figure 65 – AC Studs	
Figure 66 – AC Input Screws	
Figure 67 – AC Input Assembly Removal	
Figure 68 – Internal AC Connections	
Figure 69 – Shrink Wrap	
Figure 70 – Fan Power Supply	
Figure 70 – Fan Power Supply Connectors	
Figure 72 – Fan PS Screws	
Figure 72 – Fan PS Extraction	
Figure 75 – Fan PS Extraction	
0	
Figure 75 – Fan Assembly Extraction	
Figure 76 – Fan Connectors	
Figure 77 – Fan Orientations	
Figure 78 – Fan Screws	
Figure 79 – 20A DC Fuse	
Figure 80 – Main PS Chassis Screws	
Figure 81 – Main PS Internal Thumb Screws.	
Figure 82 – DC Regulator Fuse Access	
Figure 83 – DC Regulator Fuse Location	
Figure 84 – DC Regulator Board Assembly	
Figure 85 – DC Regulator Cables	
Figure 86 – DC Regulator Screws	
Figure 87 – DC Regulator Snaps	
Figure 88 – DC Regulator Extraction	
Figure 89 – 1.5A Low Voltage Fuse	
Figure 90 – Low Voltage Fuse Location	
Figure 91 – 1.5A Driver Amplifier Fuse	
Figure 92 – Driver Fuse Location	
Figure 93 – 25A Final Amplifier Fuse	
Figure 94 – Final Amplifier Fuse Location	
Figure 95 – Driver Stage Power Amplifier	99
Figure 96 – Driver Amp Location	99
Figure 97 – Driver RC Parts	100
Figure 98 – Driver with Thermal Compound Applied	100
Figure 99 – Driver Placement	101
Figure 100 – Final PA Input Inductor	102
Figure 101 – Final PA Output Coaxial Cables	
Figure 102 – Final PA Mounting Screws and Washers	
Figure 103 – Final PA Coaxial Cable Heights	
Figure 104 – Power Amplifier Palate	
Figure 105 – Palate DC Input.	
U I I I I I I I I I I I I I I I I I I I	

Figure 106 – Final RF Output	105
Figure 107 – Palate Screws	
Figure 108 – Palate with Thermal Compound	106
Figure 109 – Palate Coaxial Cable Heights	
Figure 110 – Power Amplifier Assembly	107
Figure 111 – Low Pass Filter Circuit Board Assembly	107
Figure 112 – Bottom PA Screws	
Figure 113 – Side PA Screw	108
Figure 114 – Front PA Screw	108
Figure 115 – RF OUT Nut	
Figure 116 – RF Sample Nut	
Figure 117 – PA Assembly Cables	109
Figure 118 – CPE Screw and Snap	
Figure 119 – Low Pass Filter Ribbon	
Figure 120 – Low Pass Filter Screws	
Figure 121 – Low Pass Filter Ribbon	
Figure 122 – Low Pass Filter Ribbon Extraction	
Figure 123 – Low Pass Filter RF Input	111
Figure 124 – Final PA Palate RF Output	
Figure 125 – Low Pass Filter Nut	
Figure 126 – Low Pass Filter Chassis Section Screws	
Figure 127 – Low Pass Filter Chassis Nut	
Figure 128 – Chassis Section Screw	113
Figure 129 – Front Display Board Assembly	
Figure 130 – Front Display Screw	114
Figure 131 – Front Display Plug	114
Figure 132 – Front Display Left Snaps	
Figure 133 – Front Display Right Snaps	
Figure 134 – Extended I/O Board	
Figure 135 – Extended I/O Cable	
Figure 136 – Extended I/O Jack Screws	116
Figure 137 – Controller Exciter Board	
Figure 138 – CPE D-Subminiature Jackscrews	
Figure 139 – CPE XLR Screws	
Figure 140 – CPE BNC Nuts	
Figure 141 – CPE Cables	118
Figure 142 – Main PS AC Wiring	
Figure 143 – CPE Screw	
Figure 144 – CPE Snaps	
Figure 145 – Coaxial Cable Displacement	
Figure 146 – Board Extraction	120

Tables

Table 1 - Specifications	3
Table 2 – 949-4144 Standard Transmitter (BE S-Series) Cable Description	15
Table 3 – Extended I/O Exciter to Transmitter Cable Description	16
Table 4 – Extended I/O Jumper Settings	17
Table 5 – GPIO Pins	41
Table 6 – BEI Pins	43
Table 7 – Main Page and Common Features.	66
Table 8 – Power Amplifier Page Features	67
Table 9 – Exciter Page Features	69
Table 10 – Audio Page Features	71
Table 11 – Logs Page Features	72
Table 12 – Exciter Diagnostics Details	76
Table 13 – PA Diagnostics Details	77

1 Overview

The STXe FM Exciter series is designed to provide a cost effective solution for FM broadcast.

1.1 Instructions

Use this document as an all-inclusive technical resource for STXe 500 systems. Determine broadcast system scope and design. Follow the detailed installation instructions and interfacing descriptions to integrate the STXe 500 in your broadcast system. Refer to user interface detail sections for descriptions of front panel LED display dynamics, interfacing through the transmitter control center, web page, enhanced web page, SNMP, backup control, and system troubleshooting. Follow detailed maintenance directions and, after troubleshooting and diagnosing failures, follow complete subsystem replacement steps.

Select settings such as frequency, expected output power, Ethernet settings, etc. can be communicated at the time of purchase. After standard preliminary testing of all systems, technicians will use customer settings and verify full system operation under closer conditions compared to the intended installation.

IP network interfacing features are optional, and are only included to the extent of the STXe 500 ETHERNET interface and setup. Network cables and hardware depend on the desired networking setup and are relatively common. Please consult a local IT professional if more is needed.

1.2 Other Documents

See the STX CPE Software Update Application Guide 597-4200 for software and firmware update details.

Transmitter operation details are not included in the scope of this manual. For electronic copies of these and other Broadcast Electronics technical documentation please visit <u>http://www.bdcast.com/information-center/.</u>

1.3 Installation and Initial Setup Summary

All of the following steps are required to get a standard STXe 500 system running. This list reflects the headings under the installation and initial setup section:

- 1. Rack mount
- 2. Exciter PA RF drive
- 3. Transmitter RF
- 4. AC power
- 5. BE-Interface active stub
- 6. GPIO Exciter-Transmitter integration
- 7. Turn on AC
- 8. Time and date
- 9. Frequency
- 10. 100% peak modulation
- 11. Power setpoint
- 12. Primary program services
- 13. Exciter-Transmitter Integration Setup

1.4 Product Specifications

2

Figure 1 – STXe 500

Parameter Specification				
Physical	·			
Height	2 RU 3.5″ (8.89 cm)			
Width	19" (48.3 cm) EIA Rack Mount			
Depth	22" (55.9 cm) with connectors, 21" chassis, 25.5" rack			
Weight	25lbs (11.3kg) unpacked			
Outlet Size	66.5 in ² (429 cm ²), rear of unit			
Environmental				
Temperature	-10°C to +50°C			
Altitude	10,000ft (3048M) maximum			
Humidity	95% maximum, non-condensing			
Air Capacity	160 CFM (4.5 m ^{3/} /Min)			
Heat Dissipation	270 W at Rated Output			
BTU	927 BTU/H at Rated Output			
AC Input	·			
Voltage	90 to 264 VAC Split Phase			
Frequency	47-63 Hz			
Power Factor	0.99 typical at 100V, 0.95 typical at 200V			
Surge Protection	Tested to EN 301 489-1, including voltage dips and dropouts (Section 9.7B), voltage surges (Section 9.8) as well as conducted immunity and conducted radiation.			
Power Consumption	770W (calculated) typical at rated output			
RF Output				
Power Accuracy	+/-5% of Total Output Power Setting			
Asynchronous AM S/N Ratio	75 dB below rated power reference carrier referenced to 100% peak AM			
Synchronous AM S/N Ratio	60 dB below rated power reference carrier referenced to 100% peak AM, 75usec de-emphasis, 75 kHz deviation @ 400 Hz Sine			
Impedance	50 Ohms nominal			
VSWR	Rated Power into 1.5:1 VSWR. Open and short circuit protected at all phase angles.			
FM Only Power	25W-550W			
Power Control Precision	1W			
Efficiency	65% typical AC to RF			
RF Output Connector	Type N, Female			
Frequency				
Range	87.5MHz to 108MHz; 10kHz increments			
Stability	Internal TCXO: +/-100Hz factory calibration, +/-4ppm aging/temp, -10 degrees C to +50 degrees C; External Input: accuracy of reference source			

Parameter	Specification
Modulation	specification
Туре	300KF8E
Type	Direct-to-channel digitally generated FM (no analog up- conversion); FM only
Capability	300 kHz nominal
Maximum Over	150%
RF Harmonics Suppression	
FCC; DOC; ITU-R; CCIR	Meets all requirements/recommendations 85dB or better typical, low pass filter standard
Composite Input	
Connector	BNC
Impedance	10k ohms, un-balanced
Level	3.5V p-p for 100% modulation
Amplitude Response	+/-0.03 dB 20 Hz to 53 kHz; +/-0.1 dB 53 kHz to 100 kHz
Phase Response	+/-0.1 degree 53kHz to 100kHz
THD + Noise	0.005% or less @ 400 Hz, 10-22Khz bandwidth, 75 uS deemphasis
IMD	0.01% or less SMPTE 60/7000 Hz; 1:1 RATIO
	0.005% typical DIM-B (14 kHz)
SNR	88dB or better below 100% modulation @ 400Hz, 10Hz- 22Khz bandwidth, unweighted
	95dB typical below 100% modulation @ 400Hz, 10Hz- 22Khz bandwidth, A-weighted filter
	100dB typical below100% modulation @ 400 Hz, 10Hz- 22Khz bandwidth, CCIR-468 filter
SCA1 SCA2 RDS Inputs	
Connectors(2)	BNC
Impedance	10k ohms, un-balanced
Level	3.5V p-p for 10% deviation
Response	+/-0.1 dB; 53 kHz to 100 kHz
AES Input	
Connector	XLR Female
Impedance	110 Ohms, balanced
Bits	16-24 bits
Rate	32, 44.1, 48, or 96 kHz
Level	-2 dBFS default for 100% modulation, Adjustable in 0.1 dBFS steps, -15 dBFS to 0 dBFS
Analog L/R Input	
Connectors	XLR Female
Impedance	600 Ohms or 10K Ohms selectable, balanced
Level	10dBm into 600 Ohms default for 100% modulation
	Adjustable in 0.25 dB steps, -10dBm to +10dBm

Parameter

Specification

Stereo Generation (AES and Analog L/R Inputs)

tereo deneration (ALO a	
Modes	Stereo, Mono L+R, Mono L, Mono R
Pre-emphasis	None, 50 usec, 75 usec selectable
Amplitude Response	+/-0.25dB; 20 Hz to 15 kHz
THD + Noise	0.03 or better @400Hz, measured 10 Hz-22Khz, 75 uS
	deemphasis
Mono (L+R):	0.005 typical @400Hz, measured 10 Hz-22Khz, 75 uS
Stereo:	deemphasis
	0.01 typical @400Hz, measured 10 Hz-22Khz, 75 uS deemphasis
	uccinpliais
	86dB or better below 100% modulation @ 400Hz,
	10 Hz-22Khz bandwidth, unweighted
	95dB typical below 100% modulation @ 400Hz,
	10Hz-22Khz bandwidth, A-weighted filter
	100dB typical below 100% modulation @ 400 Hz, 10Hz-
	22Khz bandwidth, CCIR-468 filter
	90 dB, Stereo 80 dB or better below 100% modulation @
	400 Hz
IMD	
Mono (L or R)	0.01% or less SMPTE 60/7000Hz; 1:1 RATIO
	0.005% typical DIM-B (14kHz)
SNR	
Mono (L+R):	86dB or better below 100% modulation @ 400Hz,
	10 Hz-22kHz bandwidth, unweighted
AES:	86dB or better below 100% modulation @ 400Hz,
	10 Hz-22kHz bandwidth, unweighted
Analog:	93dB typical below 100% modulation @ 400Hz,
	10Hz-22kHz bandwidth, A-weighted filter
	98dB typical below 100% modulation @ 400 Hz,
	10Hz-22kHz bandwidth, CCIR-468 filter
Stereo:	80 dB or better below 100% modulation @ 400 Hz
	Unweighted
	onweighten
Stereo Separation	70dB or better, 20Hz to 15kHz
AES:	80dB typical, 20 Hz to 15 kHz
Analog	76dB typical, 20 Hz to 15 kHz
Crosstalk	
Linear	90dB below 100% typical; Main into Sub or Sub into Main
Nonlinear	80dB below 100% typical; Main into Sub or Sub into Main

Parameter	Specification
Pilot Output	
Connector	BNC, un-balanced
Level	1V p-p +/- 5% into high impedance
Stability	+/- 300Hz or better on internal reference.
	+/- 3.0° or better per ITU-R on internal reference.
	External reference dependent on accuracy of reference source
10 MHz Input	
Connector	SMA un-balanced
Level	1 to 3 V p-p, nominal 2.8 V p-p (13 dBm)
1 Pulse Per Second Input	
Connector	SMA un-balanced
Level	5V TTL Rising Edge
Regulatory FCC; IC; CE; BETS-6; IEC215	Meets or exceeds requirements

©2018 Broadcast Electronics

6

1.5 Default Operation

Every STXe 500 Exciter is tested at the factory for quality and reliability. Technicians use settings given to sales representatives at the time of purchase. Unspecified levels are set to nominal levels for testing. Systems are shipped with specified and default settings intact. In the absence of user settings and when a reset to factory defaults command is issued on the front panel user interface, the following default settings are used:

- 1. Transmitter RF On/Off Off
- 2. Frequency 98.1 MHz
- 3. Operating Mode FM Only
- 4. FM-only Power Set point Nominal system rating 500W
- 5. Digital-only Power Set point 30% of nominal 150W
- 6. FM + Digital Power Set point 70% of nominal 350W
- 7. Sideband power level -20 dBc
- 8. Digital PAV 40V
- 9. Emergency Output Power 0 W (disabled)
- 10. 100% Modulation 75 kHz
- 11. Pre-emphasis None
- 12. Pilot Injection On, 10%
- 13. Mono/Stereo Mode Stereo
- 14. Audio Input Composite
- 15. AES -2dBFS input level
- 16. AES Stereo injection 100%
- 17. Analog L -2.5 dB input gain
- 18. Analog R -2.5 dB input gain
- 19. Analog L/R Stereo injection 100%
- 20. Composite +8.0 dB input gain
- 21. SCA1
 - o Off
 - o -12.0 dB input gain
- 22. SCA2
 - o Off
 - o -12.0 dB input gain
- 23. RDS
 - o Off
 - o -12.0 dB input gain
- 24. Real Time Clock shipped with Quincy, IL time, factory reset does not affect this
- 25. Note: The internal real time clock is likely to have stopped keeping time and reset to 2000-01-01 00:00:00 during shipping or any other time when the system is unpowered for days.

- 26. Controller Ethernet
 - o DHCP Disabled
 - o I.P. 10.2.4.110
 - o Subnet Mask 255.255.0.0
 - o Gateway 10.2.1.1
- 27. VPe Ethernet
 - o DHCP Disabled
 - o I.P. 10.2.4.111
 - o Subnet Mask 255.255.0.0
 - o Gateway 10.2.1.1
- 28. Exgine Ethernet
 - o I.P. 10.2.4.112
 - o Subnet Mask 255.255.0.0
 - o Gateway 10.2.1.1
- 29. All Passwords 00000000 (invalid)
- 30. AFC Unlock Output Active Level Low
- 31. Fault Output Active Level High

8

2 Preparing to Install

The STXe comes with an installation kit. The standard kit provides miscellaneous items that are typically required to interface the STXe 500 as a stand-alone transmitter, or to interface it to a generic transmitter.

There are two other installation kits that can optionally be ordered – one for use with a Broadcast Electronics' S-series transmitter, and one for use with a C- or T-series transmitter. The contents of each installation kit are shown below

2.1 Verify Contents of Shipment

BEI Part #	Quant	ity	Description	
909-4500-C	1	500W	STXe	
979-4063 1		STXe 5	500 Manual Binder	
597-4)63	1	STXe 500 Technical Manual	
598-0	010-001	1	1" BLUE BINDER	
979-4500-200	1	Standa	alone STXe 500 Transmitter Standard Installation Kit	
417-02	284	1	37PIN D-SUB SHELL	
418-02	283	1	37PIN D-SUB FEMALE SOLDERPOT	
420-0	007	4	PHILLIPS SCREW 12-24X3/4"	
420-0	710	4	PHILLIPS SCREW 10-32X5/8"	
421-0002		4	EIA RACK SCREW CLIPS 12-24	
423-1018		4	FIBER WASHER .500X.218X.030	
682-0001		1	AC LINE CORD, AMERICAN	
682-0003		1	AC LINE CORD, EUROPEAN	
949-4	63	1	BNC CABLE	
949-4	30	1	EXCITER ACTIVATION STUB	
Alternate installation kit:				
979-4500-101 1		STXe 5	STXe 500 Exciter in C or T Series Installation Kit	
All cor	tents of 9	79-4500	0-200 kit (listed above)	
949-4	61	1	STXe/XMTR INTERFACE HARNESS	

2.2 Items Sold Separately or Not Supplied

Remote station interface controller and wiring for desired connections
 Networking cable(s) and switch(s) for Ethernet connectivity

2.3 Tools and Materials

- Small flat blade screwdriver (about 5/32" blade or smaller)
- Large Phillips screwdriver
- Tie-wraps

Remote Station Interface Connections

- Wire at minimum 2" (5cm), enough for unmute/failsafe jump
- ☐ Wire strippers
- Soldering iron and solder
- Heat shrink tubing recommended to isolate any tightly packed wire connections

2.4 Estimated Time for Installation

Installation and initial setup should take approximately 30 minutes.

10

3 Installation and Initial Setup

This section covers installation requirements for a full featured system. Non-standard installations or optional equipment may be covered in other documents.

ENSURE ALL AC POWER INPUT IS COMPLETELY DISCONNECTED BEFORE ACCESSING ANY SYSTEM COMPONENTS

3.1 Install in Rack

The STXe 500 fits in two EIA rack units. Rack mounting is highly recommended to maximize safety, quality, and the lifetime of the system; however rack mounting is not absolutely required for operation.

Non-threaded rails: Use provided clips in the lowest and highest holes of the two selected rack units.

Insert four provided screws in felt washers. Prop the STXe500 up in place and secure the system in the rack with the screws as shown in Figure 2.

Figure 2 – Rack Mounting

3.2 Exciter PA RF Drive

Use the provided 949-4163 BNC cable to connect EXC RF OUT to PA RF IN.

Figure 3 – Exciter RF

Systems running with an FW switcher, VPe, or other signal source can skip this step.

3.3 Transmitter RF

Connect STXe 500 RF OUT to the transmitter RF input, or for standalone installations simply connect RF out to the antenna transmission line.

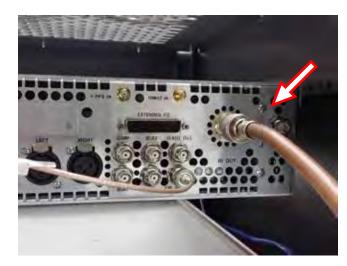


Figure 4 – RF Output

3.4 AC Power

Connect AC power from the transmitter, or use one of the provided AC power cables to plug into a power socket at the installation facility.

Figure 5 – AC Power Input

12

3.5 Broadcast Electronics-Interface Active Stub

Connect the provided exciter activation stub. Secure the two jackscrews with a small flat screwdriver.

Figure 6 – Active Stub

This stub should be set aside and stored in a safe place when system options that utilize this input are included in the broadcast system, for example FW-LP1 switcher and VPe signal generator.

3.6 GPIO and Exciter-Transmitter Integration

The STXe provides inputs and outputs that the customer can use to integrate the Exciter with a transmitter and/or a remote monitoring system. These are available on the rear connector labeled "GPIO".

To facilitate connection to the GPIO pins, all installation kits include a loose 37PIN female D-Subminiature solder-pot connector (BE #418-0283) and a shell (BE #417-0284) for the solder-pot connector.

Optional kits which include a wire harness are built with a similar solder-pot connector, to allow the customer to make additions and modifications.

Advanced setups require site engineering. This service is not supported as part of standard system packages. These setups include any physical remote station controller wire connections and transmitter interfacing. See section 5.1 for a detailed explanation of each input and output.

There are three installation types for the STXe 500: 1) Standalone, 2) Active Low/Ground logic, 3) Active High/+5V logic. Depending on which type of installation, follow the instructions in section 3.6.1, 3.6.2 or 3.6.3 below

3.6.1 Basic / Standalone

All installations require the unmute/failsafe input to be grounded. Typically this input should be connected to antenna/load switch interlocks, etc. to assure that the transmitter will only operate when safe.

If operating in a standalone mode without external interlocks, the failsafe input can be wired to the ground pin on the GPIO connector as follows:

1. Connect unmute/failsafe pin 2 (left connection in Figure 7) to ground pin 19 (right connection in Figure 7) through a failsafe relay

Figure 7 – Failsafe to Ground

2. Insert the connector on one of the shell halves.

Figure 8 – D-Sub Shell Half

3. Place the other shell half on top and set the nuts in place as indicated in the figure.

Figure 9 – D-Sub Shell Whole and Nuts

- 4. Thread the screws through the nuts by inserting up from the bottom.
- 5. Turn the assembly over and tighten with a small flat screwdriver.
- 6. Plug the assembly on the GPIO connection and secure the screws.

Figure 10 – GPIO Connector

3.6.2 FM-Only S Series Transmitter Interfacing

If interfacing the STXe to a Broadcast Electronics S-series transmitter, the cable harness BE #949-4144 should be used. This harness provides a direct connection from the GPIO on the STXe to the control interface on the S-series transmitter.

This harness can also be used for other manufacturers' transmitters that make use of active low/ground signals.

STXe 500 GPIO				Transmitter Main Exciter Interface			
37-Pin D	Wire Color	Function	Dir.	9-Pin MR	Wire Color	Expected Function	Dir.
33	GREEN	Forward Power	Out	1	GREEN	Forward Power	In
15	ORANGE	Reflected Power	Out	2	ORANGE	Reflected Power	In
2	WHITE	Failsafe/Un- mute	In	3	WHITE	Unmute	Out
25	YELLOW	AFC Lock	Out	4	YELLOW	AFC	In
20	RED	General Fault	Out	5	RED	Over-Temperature	In
19	BLACK	Ground	N/A	6	BLACK	Ground	N/A
31	BLUE	HD Pwr Cntrl	In	7	BLUE	HD Pwr Cntrl	Out
Other	N/A	No Connection		Other	N/A	No Connection	

Table 2 – 949-4144 Standard Transmitter (BE S-Series) Cable Description

3.6.3 Active High/+5V Interfacing through Extended I/O

For installations and transmitters that require active high control logic, such as Broadcast Electronics' C- and T-series transmitters, the extended I/O interface must be used.

The Extended I/O interface cable harness (BE #949-4161) provides a direct connection between the STXe and a C- or T-series transmitter.

This cable harness also has a 9-pin MR connector for use with Broadcast Electronics VPe/XG systems. For FM-only operation, this connector can remain unconnected.

The extended I/O board, in conjunction with the 949-4144 transmitter-Exciter interface cable, allows the STXe to directly replace an FXi Exciter.

Figure 11 – 949-4161 Extended I/O Exciter-Transmitter Cable Harness

Pin	Direction	Name	Description
1	Out from STXe	AFC Lock	Active when 10MHz reference (internal or external) reports that it is locked. High/Low active behavior can be selected by jumper setting on the extended I/O board.
2	N/A	Ground	Chassis ground connection.
3	Out VPe	HD Status	Indicates missing status of digital carriers when digital carriers are turned off or missing due to a detected fault/failure.
4	Out VPe	Reserved	Reserved
7	In CPE VPe	Reset	Active low Causes a hardware reset in CPE and VPe systems.
8	Out CPE	Fault	Active when a fault is detected. High/Low active behavior can be selected by jumper on the extended I/O board.
9	Out CPE	Forward Power	Forward power out GPIO pin
10	Out CPE	Reflected Power	Reflected power out pass-through.
14	In CPE VPe	Failsafe/Unmute	Assert active low to enable the Transmitter/Exciter.
15	In CPE VPe	Mute	Assert active low to mute and disable the Transmitter/Exciter RF outputs.
23	In CPE	Power Control	Analog 4-state power control for use in FMi digital transmitter systems. 0-0.75V mute, 0.75V-2V lower power, 2-3V hold, 3-5V raise.power
24	N/A	Ground	Chassis ground connection.
25	N/A	Ground	Chassis ground connection.
Other	N/A	N/A	No Electrical Connection

Table 3 – Extended I/O Exciter to Transmitter Cable Description

1. Change jumper settings to match the intended setup. This requires access to the interior of the system. Refer to section 14.2 for steps to remove the top cover. Also see section 3.13 regarding outputs that can be set to active high/low front panel configuration.

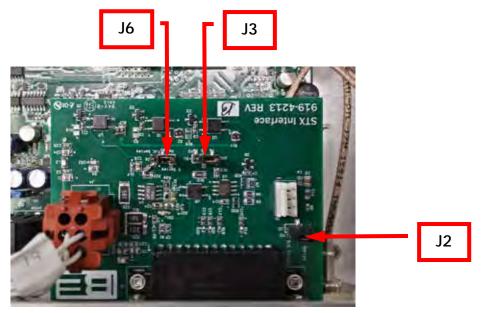


Figure 12 – Extended I/O Jumper Settings

Jumper	Position 1-2	Position 2-3	
J2	DEFAULT and "T Series" configures	"S/C Series" configures failsafe/unmute,	
	failsafe/unmute, mute, and reset inputs to	mute, and reset inputs to be active high	
	be active low logic.	logic.	
J3	DEFAULT " + 5V configures HD Status	"GND" configures HD Status Output to be	
	Output to be active low logic.	active high logic.	
J6	"T Series confgured for IBOC only" routes 4-	DEFAULT, "S/C Series" and "T Series	
	state power control input to an (optional)	Analog", routes 4-state power control	
	internal voltage-controlled attenuator.	input to CPE.	

Table 4 – Extended I/O Jumper Settings

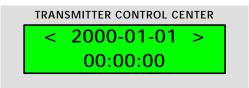
2. Connect the labeled 25-pin harness plug to the Extended I/O jack and secure it with a small flat screwdriver.

Figure 13 – Extended I/O Cable Harness

3. Connect the 37-pin plug to the GPIO jack and secure it with a small flat screwdriver.

Figure 14 – Extended I/O Harness GPIO Connection

- 4. Connect the 25-pin transmitter control cable (previous connected to FXi remote J7 jack) to the 25-pin cable harness connection and secure the screws
- 5. The cable harness also includes a 9-pin MR connection to integrate the optional VPe system with transmitters through a cable-to-cable connection. This connector is intended to remain disconnected in FM-only system installations


3.7 Turn on AC

- 1. Unlock AC main breaker on the service line and turn AC service switches to the on position.
- 2. Turn on all transmitter circuit breakers (if standalone skip this step).
- 3. Flip the Power Switch to the on position on the STXe 500 unit.

3.8 Time and Date

The internal real time clock holds the current time and date for use in the event log. This device supports 24-hour format and does not adjust for daylight savings time. If installing during summer in a daylight savings region, following standard time is recommended. Alternatively, the clock can be set to UTC

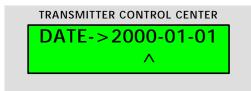
1. From the main screen on the transmitter control center on the front panel of the main assembly, press up or down to navigate to the Date and Time menu. Press enter to continue.

2. Press up or down to select the time editing screen.

TRANSMITTER CONTROL CENTER
SET CLOCK
TIME

3. Set the local (24 hour non-daylight saving) time. Press left or right to move the cursor and press up or down to increment or decrement the number.

TRANSMITTER	CONTROL CENTER
TIME->	00:00:00
	^

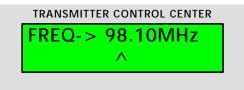

4. Press enter when finished editing for the setting to take effect in the system, save, and start keeping time.

5. Enter the date and time menu again. Press up or down to navigate to the date editing screen.

6. Set the current date. Press left or right to move the cursor and press up or down to increment or decrement the number.

7. Press enter when finished editing for the setting to take effect in the system, save, and keep time.

3.9 Frequency


STXe systems are frequency-agile. The frequency can be changed directly from the front panel – no hardware modifications or tuning procedure is required when the carrier frequency is changed.

If the STXe RF output is on ("TX ON") when the frequency is changed, the system will momentarily turn the RF output off, change the frequency, and immediately turn RF back on again with the new frequency.

1. From the main screen on the transmitter control center on the front panel of the main assembly, press up or down to navigate to the FREQUENCY menu. Press enter to continue.

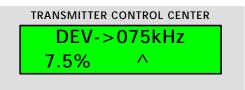
_	TRANSMITTER CONTROL CENTER
	< FREQUENCY >
	98.10MHz
L	

2. Press left or right to move the cursor between digits. Press up or down on each digit to increment or decrement the number.

3. Press enter when finished editing for the frequency change to take effect.

3.10 100% Peak Modulation

The STXe defaults to 100% modulation being +/-75 kHz. This section only applies if the STXe is being used in an installation where 100% modulation is not +/-75 kHz.


1. From the main screen on the transmitter control center on the front panel of the main assembly, press up or down to navigate to the AUDIO LEVEL menu. Press enter to continue.

2. Press up or down to select DEV,(the FM deviation control setting).

TRANSMITTER CONTROL CENTER
AUDIO LEVEL
DEV->075kHz

3. Press left or right to move the cursor between digits. Press up or down for each digit to increment or decrement the number. This change takes effect while editing, allowing active tuning.

4. Press enter when finished exit the sub-menu.

3.11 Power Set point

This section applies to installations where the STXe 500 system is the transmitter or where a fixed power output is required to drive a high power transmitter. Setups where the STXe 500 is an integrated exciter and/or IPA for a transmitter where the transmitter regulates STXe 500 power, can skip this section.

1. From the main screen on the transmitter control center on the front panel of the main assembly, press up or down to navigate to the PWR SET menu. Press enter to continue.

2. Press up or down to select the power set point for the FM operation mode, which should display as active. Note that digital, FM+digital, and hybrid HD sideband settings require an optional VPe system. Press enter to continue.

_	TRANSMITTER CONTROL CENTER
	POWER
	FM ACTIVE

3. Press left or right to move the cursor between digits. Press up or down on each digit to increment or decrement the number. Current output forward power measurements are displayed in the lower left of the screen

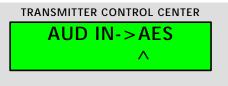
TRANSMITTE	ER CONTROL CENTER
FM	-> 65W
60W	^

4. Press enter when finished editing for the new power set point to take effect.

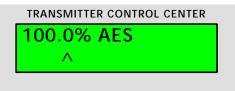
3.12 Primary Audio Source

The STXe 500 provides built-in injection of one primary audio source: AES, Analog Composite, AES Composite, or Analog L/R. Supplementary audio sources SCA1, SCA2, and RDS can be enabled and used in any on/off combination with these primary audio sources.

3.12.1 AES


The STXe supports standard AES audio as well as 192 kHz Composite over AES. The 192 kHz Composite over AES operates with various brand name systems including Wheatstone, Omnia and Orban audio processors.

To operate Composite over AES, follow the steps below, but select "AES COMP" rather than "AES" as the input.


- 1. Connect an XLR cable from the desired AES audio source.
- 2. From the main screen on the transmitter control center on the front panel of the main assembly, press up or down to navigate to the AUDIO INPUT menu. Press enter to continue.

3. Press up or down to select AES as the primary audio source. Press enter to continue.

4. The screen will display the injection percentage allocated to AES. This setting allows the customer to budget the modulation when supplementary services are present. Leave this at 100% if there are no supplementary services in use. If supplementary services are present, set the total modulation percentage associated with AES. This can be adjusted from 70% to 100%. Use the left and right arrows to move the cursor. Press up or down buttons for each digit to increment or decrement the number

- 5. Press enter when finished editing for the setting to take effect in the system and save.
- 6. AES audio levels are expressed in terms relative to Full Scale of the digital signal path selected.

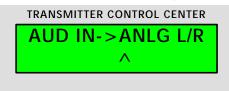
7. From the main screen on the transmitter control center on the front panel of the main assembly, press up or down to navigate to the AUDIO LEVEL menu. Press enter to continue.

8. Press up or down to select "AES". Press enter to continue.

- 9. The display will show the current peak modulation attributable to the AES input. The level can be adjusted by changing the associated dBFS setting. This has a range of -28.0 dBFS to +0.0 dBFS in 0.1 dB steps. This represents the AES level that will generate the percentage modulation shown on the screen
- Press left or right to move the cursor. Press up or down on each digit to increment or decrement the number and take effect in the system. This has immediate effect. Do this until the displayed left channel peak hold is the desired value – typically 100%.

	TRANSMITTER	CONTROL CENTER
	AES->-	02.0dBFS
	10%	^
-		

11. Press enter when finished editing to exit the sub-menu


24

3.12.2 Analog L/R

- 1. Connect XLR cables from the desired Analog Left and Right audio sources. Activate the source with constant level tones or typical level audio on each channel.
- 2. From the main screen on the transmitter control center on the front panel of the main assembly, press up or down to navigate to the AUDIO LEVEL menu. Press enter to continue.

3. Press up or down to select ANLG L/R as the primary audio source. Press enter to continue.

4. Set the stereo injection reduction (to allocate injection budget for supplemental services). Leave this at 100% if there are no supplemental services. Press left or right to move the cursor. Press up or down for each digit to increment or decrement the number.

- 5. Press enter when finished editing for the setting to take effect in the system and save.
- 6. From the main screen on the transmitter control center on the front panel of the main assembly, press up or down to navigate to the AUDIO LEVEL menu. Press enter to continue.

TRANSMITTER CONTROL CENTER

7. Press up or down to select L. Press enter to continue.

8. The display will show the current peak modulation attributable to the Left input. The level can be adjusted by changing the associated gain/attenuation. This has a range of -96.0 dB to +22.0 dB in 0.25 dB steps. Press left or right to move the cursor.

Press up or down on each digit to increment or decrement the number and take effect in the system. This has immediate effect. Do this until the displayed left channel peak hold is the desired value – typically 100%.

TRANSMITTER	CONTROL CENTER
L->-03.00dB	
99.8% ^	

- 9. Press enter when finished editing to save the L calibration setting.
- 10. Repeat these steps 6 9 for R.

TRANSMITTER CONTROL CENTER	TRANSMITTER CONTROL CENTER
AUDIO LEVEL	R->-03.00dB
R->-03.00dB	99.6% ^

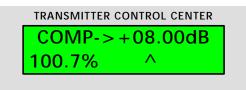
26

3.12.3 Composite

- 1. Connect a BNC cable from the desired unbalanced composite audio source. Activate the source with a constant level tone or typical level real audio.
- 2. From the main screen on the transmitter control center on the front panel of the main assembly, press up or down to navigate to the AUDIO INPUT menu. Press enter to continue.

3. Press up or down to select COMPOSIT as the primary audio source. Press enter to continue.

4. From the main screen on the transmitter control center on the front panel of the main assembly, press up or down to navigate to the AUDIO LEVEL menu. Press enter to continue.


5. Press up or down to select COMP. Press enter to continue.

6. The display will show the current peak modulation attributable to the Composite input. The level can be adjusted by changing the associated gain/attenuation. This has a range of -96.0 dB to +22.0 dB in 0.25 dB steps. Press left or right to move the cursor. Press up or down on each digit to increment or decrement the number. This has immediate effect. Do this until the displayed peak hold is the desired value – typically 100%.

Note: The Composite input is summed with the supplementary sources SCA1, SCA2, and RDS. When calibrating the Composite input, the supplementary sources should be turned off.

7. Press enter when finished editing to save the Composite setting.

28

3.13 Exciter-Transmitter Integration Settings

Certain outputs from the STXe 500. can be configured as active high or active low. Follow the instructions of this section if the STXe is being interfaced to a transmitter that utilizes active high logic. The outputs that can be configured are: 1) AFC unlock alarm output, and 2) general fault output.

For use with Broadcast Electronics S-, C-, and T-series transmitter the settings should be .:

AFC Lock = LowFault Out = High

1. From the main screen on the transmitter control center on the front panel of the main assembly, press up or down to navigate to the SETUP menu. Press enter to continue.

2. Press up or down to select AFC UNLOCK and press enter to continue.

TRANSMITTER CONTROL CENTER
SETUP
AFC UNLOCK LOW

3. Press up or down to change the selection to HIGH.

TRANSMITTER CONTROL CENTER
AFC UNLOCK->HIGH
^

- 4. Press enter for the logic setting to save and take effect in the system.
- 5. Press enter at < SETUP > again and press up or down to select FAULT OUT.

6. Press up or down to change the selection to HIGH.

7. Press enter for the logic setting to save and take effect in the system.

3.14 Turn RF Transmission On

If all setup steps have been completed, including desired optional features in the next section and transmitter setup/integration, the system is ready for operation.

If the STXe 500. is being used as an Exciter for a transmitter, the STXe 500 is controlled by the transmitter; turning the RF on at the transmitter should unmute the STXe500.

If the STXe 500 is being used as a standalone transmitter, follow these steps to turn the RF on

1. At the main screen on the transmitter control center, press the return button.

TRANSMITTER CONTROL CENTER
< TX OFF >
OW RFL=0

2. Press the button under "ON" to power up the transmitter.

_	TRANSMITTER CONTROL CENTER			
	TX OFF	0W		
	ON	OFF		

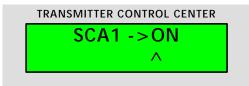
30

4 Optional Installation Steps

4.1 Additional Program Services

The STXe 500 allows operation of three supplementary audio services. These are labelled SCA1, SCA2 and RDS. It is expected that these will be generated by an external system, modulating the audio at the proper frequency between 57 kHz and 100 kHz.

The setup of these audio input sources all follow the same pattern as one another. Repeat these steps below to utilize any of these inputs


- 1. Connect a BNC cable from the external signal generator source.to the supplementary program input. Activate the source with a constant level tone or typical level audio.
- 2. From the main screen on the transmitter control center on the front panel of the main assembly, press up or down to navigate to the SCA/RDS menu. Press enter to continue.

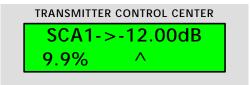
3. Press up or down to select the desired SCA/RDS input.

TRANSMITTER CONTROL	CENTER	
SCA/RDS		
SCA1 OFF	-	

4. Press up or down to change the setting to ON.

5. Press enter for the on/off setting to save and take effect in the system.

6. From the main screen on the transmitter control center on the front panel of the main assembly, press up or down to navigate to the AUDIO LEVEL menu. Press enter to continue.


7. Press up or down to select the desired input and press enter to continue.

8. Press left or right to move the cursor. Press up or down on each digit to increment or decrement the number and take effect in the system. Do this until the displayed composite peak hold is within a few percent of 100%.

Note:. Composite, SCA1, SCA2, and RDS input signals all contribute to this composite peak hold value. Only the source being calibrated should be driven during calibration; the other sources should be turned off

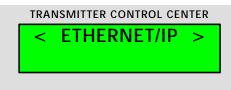
9. Adjust until the displayed composite peak hold is at the level desired for the particular input – typically between 5% and 10%.

32

4.2 Ethernet/IP Network

IP network features are entirely optional. System setup sections below contain procedures based on the LCD interface on the front panel of the main assembly, but there is alternative user interfacing for control of all of these setup parameters in both the web and SNMP interfaces.

The currently used configuration, such as IP address, can be observed in front panel menus. The actual configuration of the system may be determined by DHCP rather than the static settings. Configuration should be made to match whatever network setup is installed.


Consult your network manager or internet service provider to ensure that the correct IP settings are used.

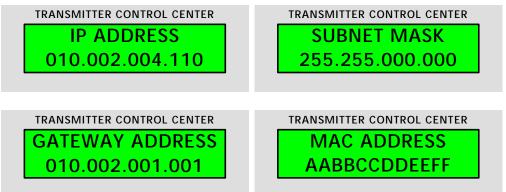
For any network type, connect an Ethernet cable from the ETHERNET port to networking equipment (such as a switch or gateway).

4.2.1 Static IP

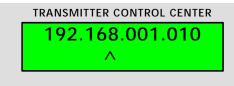
Use either this simple static IP setup or dynamic host control setup.

1. From the main screen on the transmitter control center on the front panel of the main assembly, press up or down to navigate to the ETHERNET/IP menu. Press enter to continue.

2. Press up or down to select the port to be set up. CONTROLLER is the ETHERNET port on the STXe 500. Exgine is the ETHERNET DATA port on the optional VPe/XG system. VPe is the ETHERNET VPE port on the optional VPe/XG system. Press enter to continue.



3. Press up or down to select the IP parameter to be observed or changed. Press enter to continue.



4. This level displays the current state of the IP port, which includes DHCP, IP address, subnet mask, gateway address, and MAC address. Press up or down to observe the currently active IP configuration (0.0.0.0 IP address typically indicates that the port is not connected), and then press enter to modify the static IP setting.

5. Press left or right to move the cursor to any of the 12 digits. Press up or down to increment or decrement the number. Press enter when finished making the setting change.

6. Verify that the settings active by connecting to the port.

4.2.2 Dynamic Host Control


Dynamic IP setup using DHCP is appropriate for more sophisticated and secure network setups. Ethernet will not function when DHCP is enabled and a DHCP-based host controller (typically an internet gateway) is missing from the network setup.

Use either this dynamic host control setup or static IP setup.

1. From the main screen on the transmitter control center on the front panel of the main assembly, navigate to the ETHERNET/IP menu. Press enter to continue.

2. Press up or down to navigate to the ETHERNET/IP CONTROLLER. Press enter to continue.



3. Once in the menus, press up or down to select CONTROLLER DHCP and press enter.

4. Once in the menu, press up or down to select DHCP and press enter.

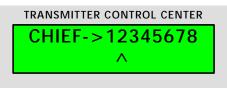
5. Press up or down to change the selection to ENABLED and press enter.

TRANSMITTER CONTROL CENTER
DHCP->ENABLED
^

6. Verify that the host control function is active by connecting to the IP port with a web browser. Connect through the managed switch/gateway. Alternatively, view the IP ADDRESS status in these menus to retrieve the current host and access the port through a different local switch.

4.3 Password

The default password is invalid for control access. One or more of the passwords (operator, user, or chief) must be set to be used to control the system through any IP interfaces.

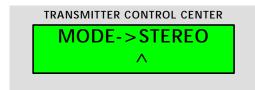

1. From the main screen on the transmitter control center on the front panel of the main assembly, press up or down to navigate to the PASSWORD menu. Press enter to continue.

2. Press up or down to select the password to be set. Press enter to continue.

3. Press left or right to move the cursor between password digits. Press up or down on each digit to increment or decrement the number password.

4. Press enter when finished editing for the password to take effect in the system.

©2018 Broadcast Electronics


4.4 Stereo Generation and Stereo Pilot Injection

Internal stereo generation utilizing the AES or Analog L/R audio input channels is optional.

1. From the main screen on the transmitter control center on the front panel of the main assembly, press up or down to navigate to the MONO/ST MODE menu. Press enter to continue.

2. Press up or down to select STEREO.

3. Press enter for the selected mono/stereo mode to save and take effect in the system.

Note that if changing from any mono mode to stereo, the internally generated 19kHz stereo pilot will automatically turn on at the previously set level. Change back to mono from stereo automatically turns the stereo pilot off.

4. To change the injection of the 19kHz stereo pilot: from the main screen on the transmitter control center on the front panel of the main assembly, press up or down to navigate to the MONO/ST MODE menu. Press enter to continue.

TRANSMITTER CONTROL CENTER
< PILOT >
ON 10.0%

5. Press up or down to select LEVEL.

6. Set the injection level of the pilot in the stereo signal. The percentage of peak injection is relative to the AES or Analog L/R level. If the AES level is set to 70% reduction factors, a pilot level setting of 10% would cause 7% deviation. Press left or right to move the cursor. Press up or down to increment or decrement the number.

TRANSMITTER CONTROL CENTER		
PILOT->10.0%		
^		

7. Press enter for the pilot level to save and take effect in the system.

The Pilot has two modes of operation: 1) On, or 2) Stereo. When the On mode is selected, the 19 kHz pilot will always be present. If in Stereo mode, the Pilot will only be present if the STXe is in Stereo mode.

4.5 Pre-Emphasis

Internal pre-emphasis filtering on the AES and Analog L/R audio inputs is another standard option feature tied to internal stereo generation. North American receivers are typically compatible with 75 microsecond filters while European receivers typically utilize 50 μ s.

1. From the main screen on the transmitter control center on the front panel of the main assembly, press up or down to navigate to the pre-emphasis menu. Press enter to continue.

	TRANSMITTER CONTROL CENTER
	< PRE-EMPHASIS >
	NONE
L	

2. Press up or down to select the desired filter type.

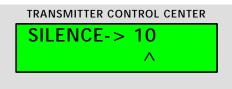
TRANSMITTER CONTROL CENTER		
PREEMPH->75uSEC		
Λ		
	l	

3. Press enter for the filter change to save and take effect in the system.

The SECONDARY AUDIO feature allows switching to an alternate source after the PRIMARY AUDIO is absent for the time entered in the SILENCE TIMEOUT setting.

1. From the main screen on the transmitter control center on the front panel of the main assembly, press up or down to navigate to the SETUP menu. Press enter to continue.

2. Press up or down to select the secondary audio to be set. Press enter to continue.


3. Press up or down to select one of the 4 inputs; Composite, Analog L/R, AES, AES Composite, or None if secondary audio isn't used. Injection level setup for Secondary Audio will be same as outlined in section 3.12.

- 4. Press enter when finished with selection for the secondary audio source to take effect in the system.
- 5. Press SET UP again.
- 6. Press up or down to select SILENCE TIMEOUT and press enter to continue.

7. Press up or down, left or right to enter a timeout in seconds.

8. Press enter when finished for the time out setting to take effect in the system.

5 Rear Panel Connections

Before installing the STXe 500, please take some time to familiarize yourself with all of the connectivity features included in STXe.

Logic "low" refers to a connection to within 0.8V of isolated ground. The logic "High" level is a connection to a voltage greater than 2.4V compared to the isolated ground. A floating input is at the logic "High" level due to internal pull-up resistors on the inputs. Inactive inputs should be left open/floating and not driven. The STXe has active Low inputs. (Refer to section 3.6 for systems requiring active High inputs.) That is, when a pin is grounded, it is asserted.

Active edge refers to a transition from the inactive state to the active state and the implication is that no action is performed on the transition back to high. A momentary input pulse on an active edge input should be at least 100ms in duration to ensure capture of the event.

Active low refers to an application of the low state. The STXe will treat the input as active as long as it is held low.

The reference designators in the figure below refer to sub-section numbers. For example, flag 1 corresponds to details in section 5.1.

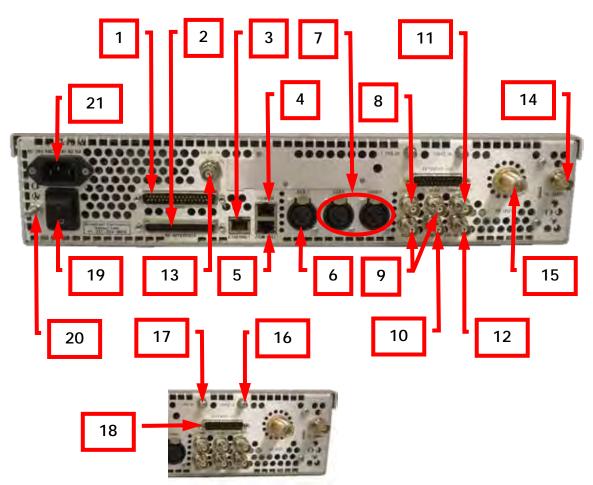


Figure 15 - Rear Panel Features

THIS SYSTEM USES CMOS LOGIC ON "GPIO" AND "BE INTERFACE" CONNECTIONS. LOGIC VOLTAGES THAT EXCEED +5V WILL DAMAGE CIRCUITRY. THIS TYPE OF DAMAGE REQUIRES HARDWARE SERVICE AT THE USERDS EXPENSE AS THE WARRANTY ON THIS SYSTEM WILL BE VOID!

5.1 GPIO

General Purpose Input/Output Connector. This D-Sub 37 male connector is used in remote station interface control and other machine interfacing. Pin descriptions are described in detail in Table 5.

Figure 16 - Standard D-Sub 37 Connector Numbering

Pin	Direction	Name	Description
1	Input	Fault Reset	Resets all the transmitter faults with an active low edge.
2	Input	Failsafe	Transmitter failsafe input. Requires a sustained low to run RF in the system.
3	Input	Transmitter On	Turns RF power on with an active low edge.
4	Input	Transmitter Off	Turns RF power off with an active low edge.
5	Input	Mute	Mutes RF while the input is held low. This essentially performs the function of "Transmitter Off" when held low.
6	Input	Raise Transmitter Power	Raises the system power 1 Watt every second that this input is held low.
7	Input	Lower Transmitter Power	Lowers the system power 1 Watt for every second that this input is held low.
8	Input	Reserved	Reserved
9	Input	Controller Reset	Forces hardware reset on the System Controller and Exciter when active Note: this input is not intended to be used during normal operation of the system and should only be used in extreme circumstances.
10	Input	Reserved	Reserved
11	Input	Reserved	Reserved
12	Input	Ground	Alternative isolated ground pin internally connected to pin 19, see below for details.
13	Input	Reserved	Reserved
14	Input	VPe System Present	Indicates the presence of a VPe system in the setup
15	Output	Reflected Power	DC voltage for total reflected power at the system RF output. Can be set up to vary linearly from OV = OW to 5V = 8 Watts or logarithmically to drive a T-series meter
16	Output	PA Total Current	DC voltage for total RF power supply current for PA module. Varies linearly from $0 = 0A$ to $5 V = 30 A$.

Table 5 – GPIO Pins

Pin	Direction	Name	Description
17	Output	PA Temperature	DC voltage for heat sink temperature reading in PA module. Varies linearly from $OV = 0$ degrees C to 5V = 100 degrees C.
18	Input	Reserved	Reserved
19	N/A	Ground	Isolated ground intended to be used for safe remote input logic connections on this interface. Jumper J9 on the 919-4200-100 board allows this to be wired to a system-wide chassis ground. Internally connected Pin 12.
20	Output	General Fault	Low when any fault is active in the system. Can be setup to be active High.
21	Output	VSWR Fault	Low when any part of the system is shut down due to reflected power above safe levels or VSWR greater than 2.0:1
22	Output	Transmitter On	Low when system RF output power is on.
23	Output	Transmitter Off	Low when system RF output power is off.
24	Output	Mute Status	Low when the transmitter is muted via input pin 5.
25	Output	AFC Lock	Low when the internal Exciter is locked onto the set frequency. Can be setup to be active High.
26	Output	Power Supply Fault	Low when a power supply fault is detected in any RF power supply.
27	Output	Reserved	Reserved
28	Output	PA Fault	Low when any fault is detected in any PA module.
29	Output	Reserved	Reserved
30	Output	Reserved	Reserved
31	Input	Raise/Lower	This is only utilized in FM+Dig and Dig only Exciter system configurations. FMi-transmitter four-state power control input: 0-0.75V mute, 0.75-2V lower, 2-3V hold, 3-5V raise
32	Output	+5V	DC voltage for system forward output power. Can be set up to vary linearly from $0V = 0W$ to $5V = 70$ Watts, or logarithmically to drive a T-series meter.
33	Output	Forward Power	DC voltage for system forward output power. Varies linearly from $OV = OW$ to $5V = 550$ Watts
34	Output	PA Voltage	DC voltage representing the variable RF power supply. Linear from $OV = OV$ to $5V = 60V$.
35	Output	Reserved	Reserved
36	Output	Reserved	Reserved
37	N/A	Ground	Chassis ground

42

5.2 Broadcast Electronics INTERFACE

Broadcast Electronics machine interface. This D-Sub 37 female connector provides conduits for many exciting new product options including a standby exciter, digital radio generators, and much more.

Pin	Direction	Name	Description
2	N/A	Ground	Chassis Ground
4	Input	Active/Standby	Tie to ground to activate this CPE for normal operation. Open for standby required for firmware updates.
Other		Reserved	Reserved

Table 6 – BEI Pins

5.3 ETHERNET

Ethernet is provided on a standard 10/100 Mbps RJ45 connector. Connect to a local area network switch and/or to a gateway using Cat5E cable for access through the network. This interface automatically negotiates speed and hardware interfacing; a crossover cable is not required. Direct connections to a PC or other network controller can be made with either a crossover or straight Ethernet cable.

IP-based interfaces such as the built-in website and SNMP require this to be connected and the network parameters set up through the front panel interface. There is no explicit limit on the number of concurrent users that can be connected to the STXe; however an excessive number of connections will cause a decrease in performance

5.4 COM IN

This input is not used in typical STXe applications at this time. Connecting to this jack may cause internal system communications failures.

5.5 COM OUT

This output is not used in typical STXe applications at this time. Connecting to this jack may cause internal system communications failures.

5.6 AES

AES/EBU audio input connector. This XLR connector is used for inputting digital audio to the standard stereo generator in the internal exciter. Select AES or AEX Comp as the primary audio source to modulate RF with this audio.

Supported bitrates include 32, 44.1, 48, 96, and 192 KSPS.

5.7 LEFT and RIGHT

Left and Right balanced analog audio input connectors. These XLR connectors input audio into the standard stereo generator system in the internal exciter. Set Analog L/R as the primary audio source in order to modulate RF with this audio.

An internal hardware jumper allows these inputs to be switched between 600 Ohm or 10k Ohm impedance.

5.8 COMP

Unbalanced composite audio input connector. This BNC connector allows input of baseband audio up to 100 kHz into the internal exciter. Setting Composite as the primary audio source modulates RF with this signal.

5.9 SCA1 and SCA2

Subsidiary Communications Authorization audio input connectors. These BNC connectors allow subcarrier programs up to 100 kHz generated by external devices to be injected in the internal exciter. These inputs are enabled and disabled independently.

5.10 RDS

Radio Data System input connector. This BNC connector allows input of an externally generated RDS standard signal to broadcast time, station identification, and program service information. This input is enabled and disabled independently.

5.11 19 kHz OUT

This is a19 kHz stereo pilot output connector. This BNC connector is used to output the pilot signal for optional use in external synchronization equipment. The output wave form is a constant 1 V peak-to-peak sinusoid when connected to a high impedance termination.

5.12 EXC RF OUT

Internal exciter RF output connector. This BNC connector outputs the internally generated exciter power level RF signal.

5.13 PA RF IN

Power Amplifier RF Input BNC connector. This is connected to the EXC RF OUT for FM operation. It is connected to the optional VPe/XG if in a Digital mode, (e.g. HD radio or Digital Radio Mondiale).

5.14 RF SAMPLE

Power amplifier RF sample output connector. This BNC carries a coupled RF signal from the PA. Nominally generates about 19 dBm at about 500W PA output power. The output level scales with total output power of the PA module. This not a calibrated output.

5.15 RF OUT

Power Amplifier RF output connector. This N-connector output carries the amplified RF output. Connect this output to a 50 Ohm load.

5.16 10 MHz IN

This is a 10 MHz clock input connector. This BNC synchronizes the exciter's internal clocking to a connected sinusoidal clock signal. This may optionally be connected to a high precision clock generator such as a GPS receiver module or a digital or digital radio signal generators.

5.17 1 PPS IN

The one pulse-per-second BNC input connector synchronizes stereo pilot signals such that rising zero-crossing point in the pilot signal corresponds to the rising edge of this logic clock. This may optionally be connected to a high precision clock generator such as a GPS receiver module or a digital radio signal generator.

5.18 Extended I/O

Interface specifically designed for legacy Broadcast Electronics transmitter integration. See section 3.6 for details.

5.19 Power Switch

AC power switch. This hand operated switch turns on or off power service to the device. Complete power-down of the module may take a few seconds.

5.20 Ground

Ground bolt that should be used to connect chassis ground to the transmitter station ground.

5.21 AC Input

This is the AC power input jack. Use the provided AC power cord to plug into a standard AC outlet, or create a custom cable for 220 single phase service.

6 Front Panel Features

The main assembly front panel contains LED indicators for the system controller, internal exciter, internal power amplifier, and an LCD user interface.

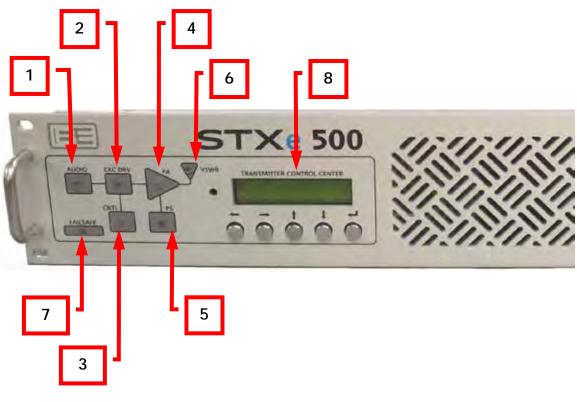


Figure 17 – Front Panel

6.1 AUDIO

The audio LED indicates the status of the current primary audio source and remains green until a fault is detected. If an audio peak is detected, this LED turns red and also during a silence condition when no secondary audio is setup. If a secondary audio source is setup, the LED will turn orange after the primary silence timeout. The LED will return to green when the fault is cleared and the exciter switches back to primary. Check the exciter diagnostics for details on what alarms or faults may be active.

6.2 EXC DRV

The exciter drive LED indicates the status of any alarms or faults related to the exciter or exciter drive in an internal PA. Green indicates that the exciter has settled into normal operating conditions. Orange indicates an alarm condition. Red shows when the exciter has a fault condition. See Table 12 – Exciter Diagnostics Details in section 13.5 for more information.

Note that there is overlap between internal exciter and internal PA status for drive detection. An exciter drive alarm indication may originate in measurements within the PA.

6.3 CNTL

The system control LED shows the status of the system controller. Green indicates normal control operation. Red indicates a loss of monitoring and control communication between controller units. This could be between the system controller and the front panel display, any PA controller, or the combiner controller.

6.4 PA

The power amplifier LED shows status of the internal PA. Green indicates normal operation. Orange indicates an alarm condition. Red indicates a fault and PA shutdown condition. Table 13 – PA Diagnostics Details in section 13.6 for details on what alarms or faults may be active.

6.5 PS

The power supply LED shows the status of the RF power supply module. Green indicates normal operation. Orange indicates a self-reported alarm. Red indicates a determined fault. Check PA diagnostics for details on what alarms or faults may be active in the supply connected to the PA.

Note that these power supplies are on the same communications node as the PA they are paired with. A communication fault will illuminate red on both the PA and the PS LEDs.

6.6 VSWR

The voltage standing wave ratio LED shows the status of the internal PA output in terms of measured reflected power. Green indicates normal operation into an acceptable load. Orange indicates active foldback protection. Red indicates a fault and shutdown condition.

6.7 FAILSAFE

The failsafe LED is coupled to the failsafe input on the back panel when running transmitter modes. Green indicates the failsafe is connected for normal operation. If red the failsafe is not connected and RF power will not turn on.

In exciter setups this LED is turned off.

6.8 TRANSMITTER CONTROL CENTER

This front panel LCD interface can be used for control and monitoring of all features in the system. Use the five buttons below the screen to navigate and make modifications. See section 8 - Transmitter Control Center, for details on how to use this interface.

7 Theory of Operation

Refer to the system block diagram in Figure 18 on the page following.

Broadcast Electronics STXe FM transmission systems are equipped with a system controller and exciter platform. The exciter sub-system routes audio and other program service data through digital signal processing, digital up conversion, a numerically controlled oscillator, RF digital to analog conversion, and low-power RF analog signal output. This signal path generates a frequency modulated carrier waveform centered within the traditional FM band.

A micro-controller provides user interfacing (including IP), regulates all signal path stages in the exciter, and negotiates control and monitoring with PA controller and front panel interface controller peripheral micro-control modules through controller area network CAN communications.

STXe systems include numerous built-in safety features. Hardware failsafe can be used to reliably disable RF with external automated or manual controls. Automatic RF power fold-back, and system shutdown mechanisms protect power amplification in events of DC over-currents, excessive reflected RF power, or dangerously high internal temperatures. Dedicated circuits immediately mitigate unsafe conditions while micro-controllers self-determine system problems, take action as necessary, report faults/alarms, and log issues for troubleshooting.

In standard setups, exciter RF is routed from lower power exciter RF output back into the system in order to drive RF power amplification. Operating mode setup parameters determines the definition of this interface, which is described in following paragraphs.

Systems come standard equipped to run either of two standard modes of power amplification. FMonly mode utilizes a fixed exciter RF drive level. Variable final amplifier voltages compress the RF signal in class C amplifier operation, effectively controlling system gain to maximize power efficiency. FM+Digital and Digial-Only modes utilize fixed gain while operating class AB amplifiers for minimal signal distortions. The exciter drive level then varies to control system output power level.

Power in a digital RF mode exciter system setup is controlled by a higher power transmitter through a 4-state input with these states; mute, lower, hold, and raise. The duty cycle on this input determines system response.

Standalone transmitter and FM-only exciter setups utilize internal digital closed power control based on system forward output. Forward power approaches the active system set-point. The exciter is included in this loop when running digital power modes. FM-only closed loop is entirely contained within a PA microcontroller.

Fans are two-speed and fully turn on through active hardware logic. This logic is coupled to uninhibit logic between the PA controller and DC power regulation circuitry.

Standard AC mains supply electrical power. An AC throw switch is included. A main power supply module converts AC to fixed DC power for use throughout the system. Power regulation systems input fixed DC and supply various lower level static and variable voltage levels to all circuitry and RF amplifiers. A fan power supply provides dedicated DC to fan(s).

There are two DB-37 connectors and a DB-25 connector to allow the STXe to interface with other equipment. This includes transmitters, remote monitoring and control, and signal generation options. With a provided cable harness, the STXe can seamlessly interface with legacy Broadcast Electronics transmitters. Using the configuration capability of the I/O pins, the STXe can be made to interface with most other manufacturers' transmitter models as well.

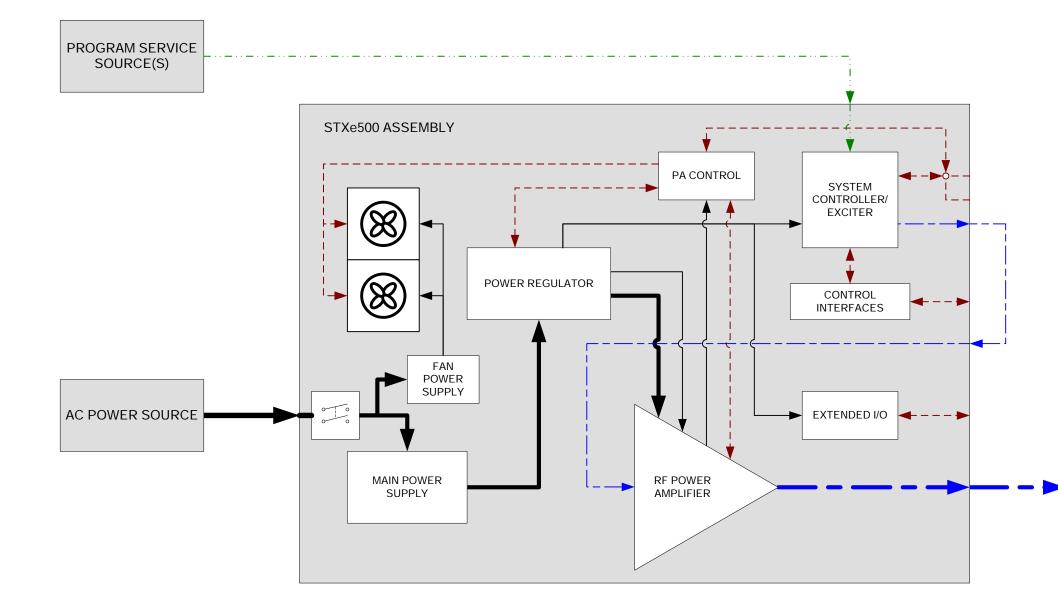
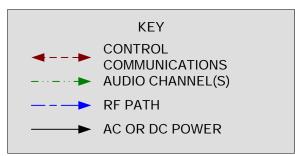



Figure 18 – STXe 500 System Block Diagram

ANTENNA/ TRANSMITTER

8 Transmitter Control Center

Initial system setup after installation requires interfacing with the LCD display and buttons on the front of the main assembly. Once initial setup is complete, almost all configurations accessible on this control center can be modified remotely via Ethernet interfaces.

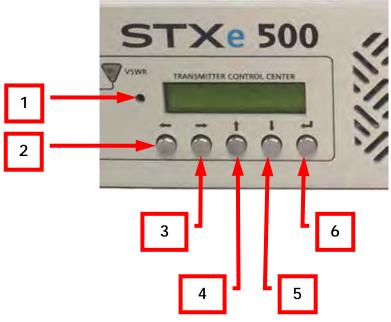
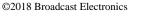


Figure 19 – Transmitter Control Center

8.1 Contrast Control

A potentiometer tuning tool can be used to adjust the contrast on the LCD screen if desired. Turning the potentiometer clockwise reduces contrast, and turning it counter-clockwise increases contrast.

8.2 **f** Left Button


The context dependent left button performs two primary functions. When navigating between screens it allows a return to the main screen from any other navigation screen. When an editing screen is entered this button moves the cursor one space to the left.

8.3 **G** Right Button

The context dependent right button performs two primary functions. When navigating between screens it allows a return to the first screen of the submenu tree. When an editing screen is entered this button moves the cursor one space to the right.

8.4 **h** Up Button

The context dependent up button performs various functions. When navigating between screens through the trunk it selects a new submenu tree. After entering a submenu screen it either selects different branches or cycles through options. When an editing screen is entered this button modifies the object located at the cursor.

8.5 **İ** Down Button

The context dependent down button performs various functions. When navigating between screens through the trunk it selects a new submenu tree (in the opposite direction as the up button). After entering a submenu screen it either selects different branches or cycles through options. When an editing screen is entered this button modifies the object located at the cursor.

8.6 8 Return Button

The context dependent down button performs two primary functions. When navigating between screens through the trunk it enters the next level in the menu. This can lead to submenu screens, options selection, or field editing. Once an editing function has been made this saves the field and returns to the first screen in the submenu tree.

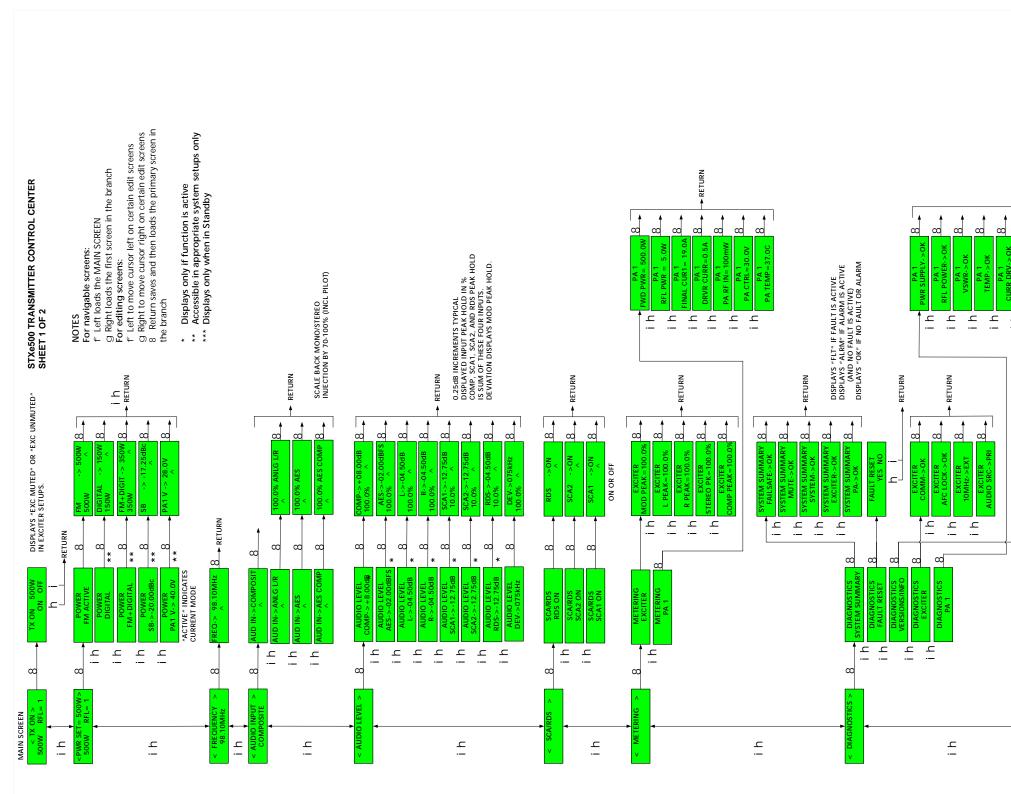
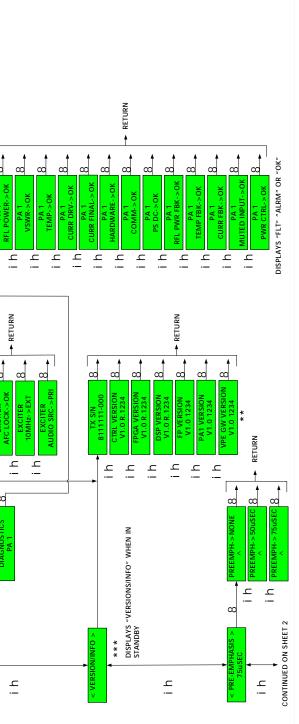



Figure 20 – Transmitter Control Center Menus Sheet 1

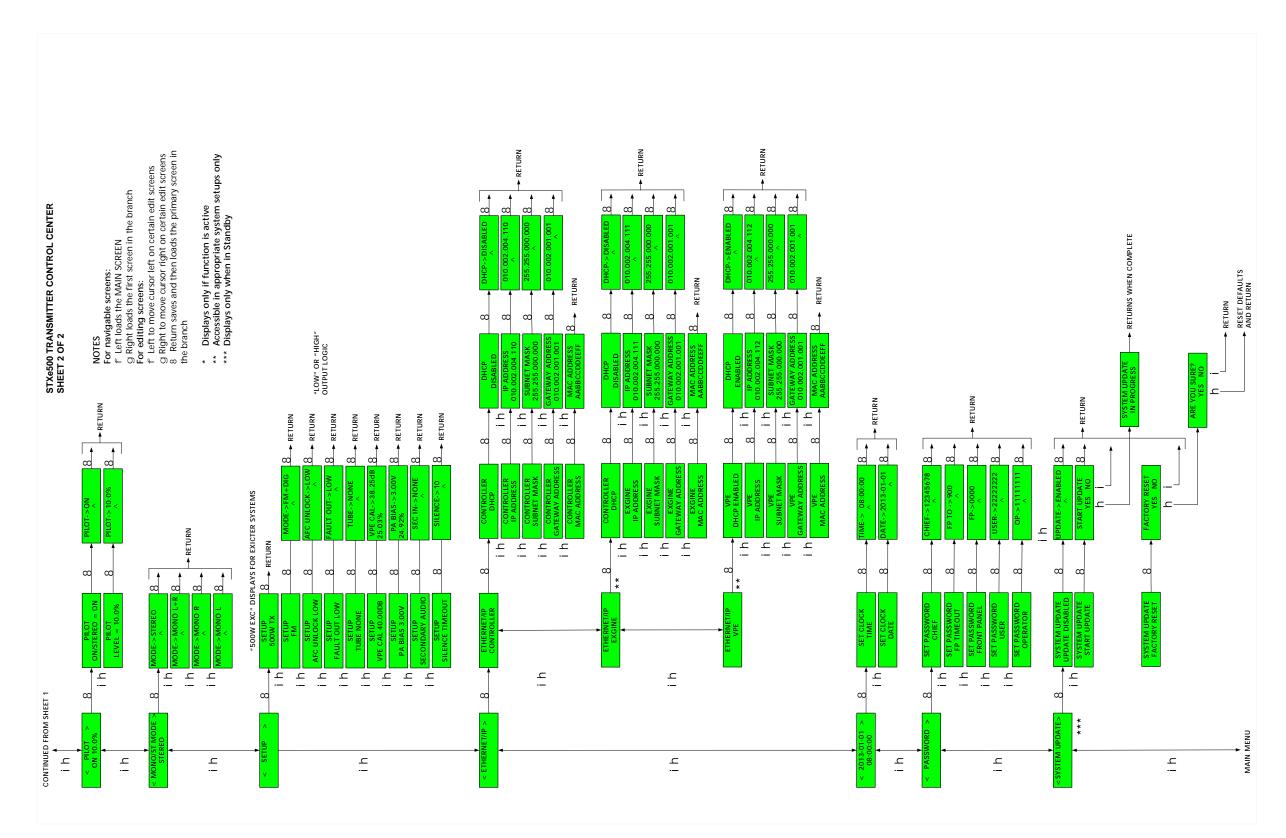


Figure 21 – Transmitter Control Center Menus Sheet 2

9 Basic Web Page

The STXe system comes standard with a built in small-capacity HTTP web server. To load the web page, simply direct a standard web browser on a local- or network-connected PC to the IP address assigned to the controller – static IP set during system installation, or dynamic host control regulated by the network.

To check the current web interfaces version, simply point a web browser to [IP Address]/rev.html

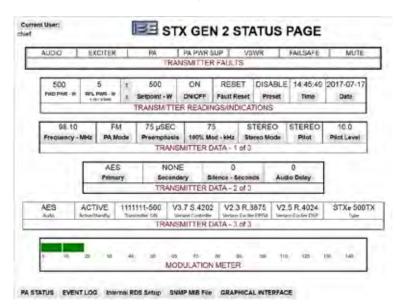


Figure 22 – Basic Web Interface Main Page

The basic settings and monitoring fields in the system are shown above in Figure 22 – Basic Web Interface. To cycle through the active user selection click the **"Current User"** link in the upper left. To access PA monitoring information or the event log click on "PA STATUS" or "EVENT LOG" links respectively. These can be seen in Figure 24 and Figure 25.

Posting any settings to the exciter requires an appropriate login. The graphic button objects are disabled for user types that do not have permission to modify exciter settings. Once an adequate user selection is made, the buttons can be clicked to display input options. When the change is attempted a dialog box will pop up, shown in Figure 23. Simply enter the active user type (exactly as displayed in the upper left of the page) and the correct 8-digit numerical password that goes with it to save the setting.

NOTE: The transmitter is shipped with both of the passwords set to a default of "00000000". However, as a security measure, the password "00000000" is not accepted as valid by the transmitter. The customer must change the password to something other than "00000000" before remote operation is allowed. The password can only be changed at the front panel. Refer to Section 4.3 regarding setting the passwords.

Password entry times out after 10 seconds. If the password entry session times out, simply try again in a new session. Valid login is remembered for the active session only. If the user changes to a different sub-page in the Standard HTTP interface, the password is lost and it will need to be re-entered.

AUDIO	EXCIT	ER	PA	PA PWR SUP	VSWR	FAILSAFE	MUT
			TF	ANSMITTER FAU	LTS		
0	0	Americation	Repared	474	474		17-07-1
FWD PWR -W	RFL PM	0	American 7.43	74 in requesting your identity	Date		
	6153	Use fame		An indexed his rand	of entries and the	and appendix to the second	Louis
-	_	Patencied	1				
98.10	5.1				- the		10.0
Frequency -	MHz	_					ot Level

Figure 23 – Basic Web Interface Authentication

60 FIRC PAR-W	2 RELEWR.W	65 Rf m -mill	351 DRV I - milmet		4.51 Final Q1 Arrest			31.9 1emp-C	22.7
DRIVE	VSWR.	FINAL I	FOLDBK	MUTE	PATEMP	PS.	COMM		

MAN STATUS

BE	EVENT LO	DG
----	----------	----

Ħ	TIMESTAMP	EVENT	SOURCE	TYPE	PARAM	DESCRIPTION
10	2017-07-05 15:15:52	6001	Controller.	Event	0	Transmitter On
9	2017-07-05 15:15:32	6002	Controller	Event	0	Transmitter Off
8	2017-07-05 13:29:00	6004	Controller	Event	1	Audio Select Change Analog L+F
7	2017-07-05 13:15:22	6001	Controller	Event	0	Transmitter On
6	2017-07-05 09:43:26	6015	Controller	Event	0	Transmitter Unmuted
5	2017-07-05 09:43:26	6017	Controller	Event	0	System Powerup
4	2017-06-27 14:44:59	6002	Controller	Event	0	Transmitter Off
3	2017-06-27 14:44:49	6001	Controller	Event	0	Transmitter On
2	2017-06-27 13:57:07	6015	Controller	Event	0	Transmitter Unmuted
1	2017-06-27 13:57:07	6017	Controller	Event	0	System Powerup

Figure 25 – Basic Web Interface Events Page

9.1 RDS and FSK Setup

To enter static RDS information or FSK ID data such as Translator Identification, use the "Internal RDS Setup" link from the Basic Web page, Figure 26, to access the RDS Setup Page, Figure 27.

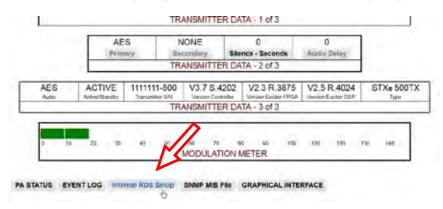
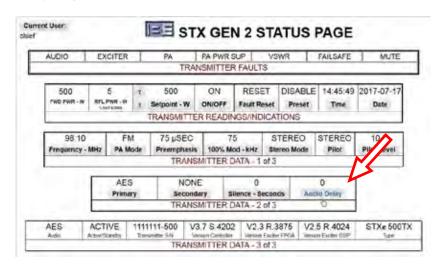


Figure 26 – Internal RDS Setup Link

STATIC RDS Mode	6 RDS PTY	37869 RDS PI	0 Alt Freq			
87.6 AF 1	87.6 AF 2	87.6 AF 3	87.6 AF 4			
87.6 AF 5	87.6 AF 6	87.6 AF 7				
Radio Text	Classic Rock 9	8.1				
Program Service WXYZ						
TRE RT						
TRE PS						
	RDS D	ATA				
	DISABLED FSK Mode	FSK ID				
_	FSK ID	DATA				


Figure 27 – RDS Setup Page

9.2 Audio Delay Setup

This is an adjustable audio delay to help set up a single-frequency network, or a repeater station by getting the delays of the system in sync.

The audio delay sets the amount of time from when the analog/AES/AES-Comp signal arrives at the rear panel until it affects the modulation of the RF signal. The audio delay is settable with an integer number, (steps) from 0 to 8128, where each step is on the order of 5.3 micro-seconds. This correlates to a delay range from 0 to 43.7 milliseconds.

To enter a delay setting, click on the Audio Delay radio button above, to display the setting window in Figure below. Enter a number calculated from the 5.3 micro-second step amount. The example below of "20" equals a delay of 106 micro-seconds.

500 FIND FIND -= 1	Contrasti Contrasti	Response inte	3N RESET		15:24:40 -78%	2017-07-13 Date
ad 10 Turquenicy + MH	F.M.	711 IF	Cere .	TERED No.	STERED Intel	110 Finition
Į	AES	NONE	O Shinon - Batta TER CATA - 2 of		C Delay	

Figure 28 – Audio Delay Web Interface

When finished, press OK to save and exit the menu.

10 Enhanced Web GUI

Along with the basic web page that comes standard, STXe systems also come standard with an Enhanced Web GUI. This provides a more intuitive viewing and control experience than the Basic Web Interface while still providing all the features but in a more dynamic and user-friendly format. To access this page, click the "GRAPHICAL INTERFACE" link at the bottom of the basic web page.

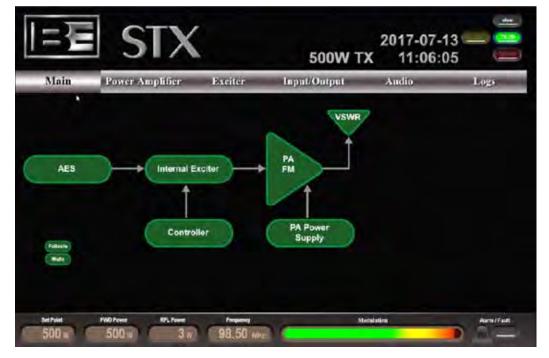


Figure 29 – Link from Basic Page to GUI Main Page

Figure 30 – Enhanced Web Page

Refer to Fig 30. While navigating the screen pages, buttons that are banded in Blue are the current settings. When the PC's mouse pointer icon comes in contact with one these buttons, it will change from the user's default mouse icon, (Arrow) to either the (Hand/Finger) icon or (Not-Allowed) icon, depending on the Login Profile.

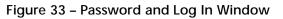
10.1 Login

The default login profile is "View". This does not require a password and allows monitoring only. Basic control of system power is allowed with the "Operator" profile. Full control of all settings that can be modified through the web interface requires the "Chief" login profile.

To change the login profile, move cursor into the "view" button and a popup window will display, [click to change Logged in status] as in Figure 32 A. The previous screen being displayed will change to that in Figure 32B. Move cursor into the desired profile. In this example "Chief" is being selected.

Figure 32 – Login Profile Selection

Next, a dialog box will pop up requesting password entry. Change browser settings if this dialog box is being blocked by the browser. Enter the password and press enter or click Save and the process displayed will move to "Pending", followed by "Logged in".



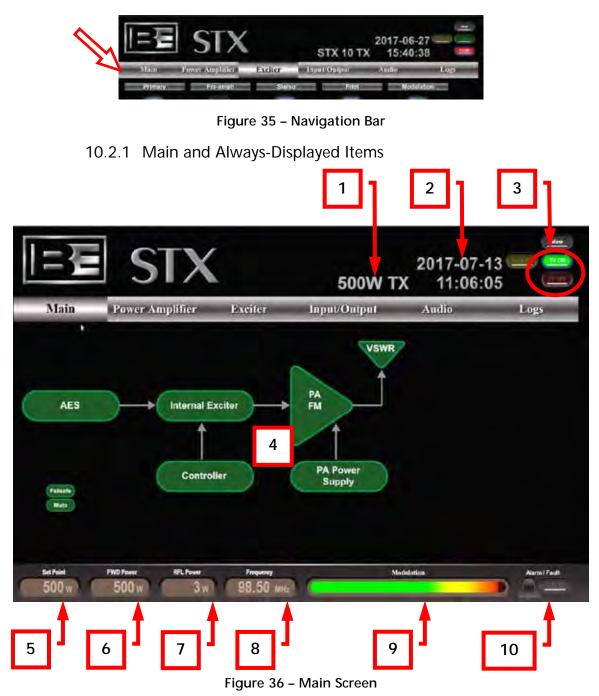


Figure 34 – Profile Logged Out

10.2 Navigation

All of the screens in the enhanced web GUI can be accessed by clicking on the text in the navigation bar near the top of the page. The currently displayed screen pops out as shown.

#	Feature	Description
1.		
1.	STX System Type	Currently configured hardware setup type. This is
		determined during initial setup of the system, and
	Data and The s	might be 60W or 500W, TX (transmitter) or Exciter.
2.	Date and Time	Real time clock data configured during setup.
3.	Transmitter ON/OFF	ON/OFF status of the final RF output (not just the
		control status). Transmitter setups allow RF to be
		turned on and off with proper login level.
4.	System Block Diagram	Overall system status. Green, amber, and red block
		colors correspond to front panel LED behaviors. See
		section 0
		Front Panel Features for details.
5.	Power Control Set Point	Forward power value that automatic power control
		attempts to converge to. Note that exciter setups do
		not rely on this. External power control from a
,	5 15	transmitter is utilized instead.
6.	Forward Power	Internally measured system forward RF power output
_		reading.
7.	Reflected Power	Internally measured system reflected RF power reading.
8.	Frequency	FM carrier frequency setting.
9.	Modulation	Internal frequency modulation peak hold as a
		percentage of peak deviation from nominal frequency.
10.	Fault/Alarm	System faults cause this to display red, and alarms in
		the system cause this to display amber. Check the Logs
		page for details.

Table 7 – Main Page and Common Featur	es
---------------------------------------	----

10.2.2 Block Diagram Figures used for Navigation

Several of the figures in the block diagrams may also provide navigation to another screen.

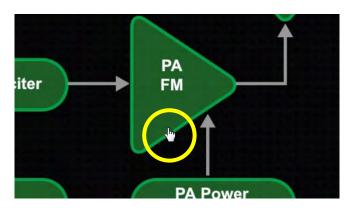


Figure 37 – Block Diagram for Navigation

10.3 Power Amplifier

The power amplifier page contains detailed status information for the internal power amplifier. Note that STXe PAs only take up one column, but the page is sized to display multiple PAs, as in 2,3, and 5kW STX LP Gen II systems as well as the STX10 HP.

Measurement meter displays scale with PA type as necessary. For example the maximum scale for 60W PAs is about 70W while the maximum scale for 500W PAs is about 550W.

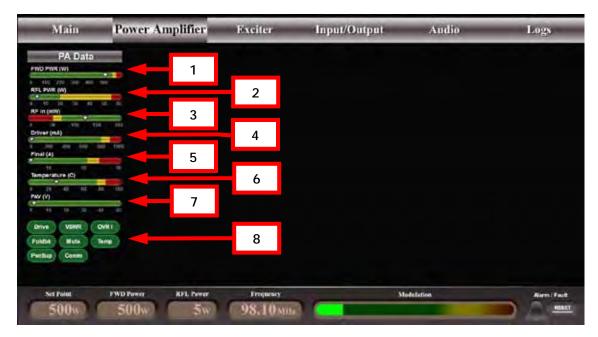


Figure 38 – Power Amplifier Page

#	Feature	Description
1.	Forward Power	PA forward RF power output reading. This is also the
	FWD PWR (W)	System Forward output power in STXe systems.
2.	Reflected Power	PA reflected RF power reading. This is also the System
	RFL PWR (W)	Reflected power in single-PA STXe systems.
3.	RF Input Power	PA RF drive input power reading in miliwatts.
	RF In (mW)	
4.	Driver Current	Current in milliamperes for the driver stage RF power
	Driver (mA)	amplifier.
5.	Final Current	Current in amperes for the final stage RF power
	Final (A)	amplifier.
6.	Temperature	Internal heat sink temperature measurement.
	Temperature (C)	
7.	PAV	Final amplifier drain voltage. This variable voltage
	PAV (V)	supply is sourced from the PA power supply.
8.	Status Balloons	Fault and alarm indications for the PA. These will be
		red, yellow or green depending on the status of each
		item. Check the log or see Table 13 – PA Diagnostics
		Details in section 13.6 below for details.

Table 8 – Power Amplifier Page Features

10.3.1 Reflected or VSWR Metering

Another feature located in the lower bar is part of the power readings. You can chose to display Reflected Power or VSWR as shown in Figure 39. The display can be toggled to either mode with proper login profile

Figure 39 - REF Power vs VSWR Feature



Figure 40 – Exciter Page

#	Feature	Description
1.	Source	Audio input source selection. Choose one of the listed
		options. Composite ignores stereo generation settings.
2.	Pre-emph	Pre-emphasis setting for internal stereo generation.
3.	Stereo	Mono/stereo setting for stereo generation.
4.	Pilot	19 kHz pilot on/off and level controls. This
		automatically updates with changes to the
		mono/stereo setting. Can be controlled independently.
5.	Modulation	Frequency deviation amount in kilohertz from nominal
		carrier frequency. This setting represents 100% peak
		frequency modulation.
6.	Secondary	Secondary Audio input source selections. Choose one
		of the listed options.
7.	Transmitter Power	Automatic power control set point. Transmitter mode
		setups attempt to regulate total system forward output
		power to this value.
8.	Frequency	Nominal FM carrier frequency.
9.	Silence Timeout	Time allowed before loss of primary audio source
		switches to secondary audio source.

Table 9 – Exciter Page Features

10.5 Input/Output

	E S			500W	2017-07- 500W TX 15:11:		
Mai	n Power Am	plifier	Exciter	Input/Output	Audio	Log	15
Pin #	Input Description	Status		Piad	Output Description	Status	
	Failunte typot	4		18	Total Reflected Power (sealing)	417	
	Mate toost	0		34	Tata PA Current analog	1.32	
#	Resorved ±	•		10	PA Insperature sculing)	1.45	
12	Reserved 2			20	Spatern Fault States	•••	
18	VT's System Present	0		51	VEWR Alarm Ratus		
				12	Transmitter On Status		
				23	Transmitter OP Statute		
				24	Nute Status	10 C	
				85	APC Lock Distus		
				2	Autic Select 1		
					Proset Nation	0.000	
				**	Availe: Swinct 3		
				20	Min) Ferward Power Landing	8.09	
					PAIn) Reflected Power (analog)	0.90	
					Total Forward Pener (peoling)	4.80	

Figure 41 – Input/Output Page

The Input/Output page contains information for connections on the GPIO connector pins, shown in the left columns. These connections may be used for machine interfaces with remote station controllers/monitors or with other transmission system equipment. Refer to section 5.1 for detailed function descriptions.

Figure 42 – Audio Page

#	Feature	Description
1.	Source	Audio input source selection. Choose one of the listed
		options. This duplicates function in the Exciter page.
2.	Gain	Gain settings for hardware amplification/attenuation.
		AES gain is a digital scale factor.
3.	Stereo Injection Scale	Allows the stereo composite to be scaled down to
		balance modulation budget without changing gain
		calibration setup. This also scales pilot when in stereo.
4.	Modulation	Peak holds for inputs displayed as effective % of peak
		modulation. Composite Mod includes Unbalanced
		Composite, SCA1, SCA2, and RDS inputs.
5.	SCA 1,SCA 2, and RDS	Allows on/off control and input hardware
		amplification/attenuation adjustment.

10.7 Logs

	= 5				500	2017-07 WTX 15:09	-0: ••••••••••••••••••••••••••••••••••••
Min	Per Am	plifie	Exciter	i e	Inpr /Out	put Audio	Logs
ent#	Tere starp	Code	Bourop	Type	Perameter	Full Description	
	2017-07-05 12-29/80	6454	Gentraßen	Evera	1	Autio Stringt Change Alaling L/R	ELEAN
Ŧ	2017-03-05 13-15:22	6621	Centraliter	Event	<u>ú</u> -	Transmitter Ca	
4	2117-07-05 09 43:25	6615	Centroller	Buerra .		Transmitter Unmaled	Serial Number
4	2017-07-05 09:43:25	6017	Contraller	Event	¢.	System Powerup	5/11:11111-520
4	2017-06-2714:44:59	6032	Ceitester	Event	0	Transmitter Of	WAC 0004A338-8770
3	2017-00-27 14:44:49	84071	Contrailer	Evert	4	Tumentar P	9
ż	2017-06-07-13-57-07	4015	Controller	Deterrit	4	Transmitter afternite if	Software Versions
4	2017-00-27 13:57:87	6017	CentraBer	Direv2	ņ	P am Pererup	Chit V17 5 4207
				_			FEGA V2.1 FLINTS
					10		DRP-V2 A R. MOA
					10		FP:V2.1 2914
							PA: V96.88 3772
						11 📕	Comt: NA
							ALC: MARK

Figure 43 – Logs Page

Table 11 – Logs Page Features

#	Feature	Description
1.	Index	Event index number. Initially (or after a clear) this starts at
		0 and increments for every event. If the log fills, half of
		the current entries are deleted and numbering resumes.
		When 65535 entries are created, the log clears itself.
2.	Time Stamp	Date and time of the event based on the system's internal
		real time clock and calendar.
3.	Type Code	Unique event type identification number.
4.	Source	Controller node from which the entry was triggered.
5.	Classification	Type category identification in a readable format.
6.	Parameter	Event-specific value for logging some changes.
7.	Description	Log entry details in a readable format.
8.	Scroll	Click the up and down arrows to scroll through the log.
9.	Clear	Wipes all log entries from memory permanently.
		NOTE: Only displays when in Chief login profile.
10.	Serial Number	Displays BE serial number and controller Ethernet MAC.
11.	Software Versions	Listing of all viewable software versions in the system.

11 SNMP

Simple Network Management Protocol is a member of the Internet Protocol standard communications suite. The STXe system comes with a built-in SNMP agent (SNMP version 2c) for handling all request types included in the protocol – GET, SET, GETNEXT, and GETBULK. The appropriate MIB for the version of SNMP agent installed on the exciter must be downloaded from the exciter itself. As with any MIB, this ASCII text file completely defines the data structure within the agent. The MIB also provides textual descriptions for every accessible object.

SNMP IS FOR ADVANCED APPLICATION INTEGRATION. THIRD PARTY APPLICATIONS THAT UTILIZE THE SNMP INTERFACE ARE NOT SUPPORTED BY BROADCAST ELECTRONICS.

To download the file access the web interface using a standard web browser. Right click on the "SNMP MIB File" link and click "Save link as...". Save a local copy of the MIB file wherever desired for use in an SNMP manager application. Alternatively, click the link and navigate to the file in the browser. Right click anywhere in the viewing space and click "Save as..." Simply remove the .txt extension (leaving only the .MIB extension) and save at the desired location.

0	10	20	30	40	50	60	70	80	90	100	110	120	130	140
						MODI	JLATIC	N MET	FER					
						MODA	arrance.		L IN					

PA STATUS EVENT LOG Internal RDS Setup SNMP MIB File GRAPHICAL INTERFACE

Figure 44 – SNMP MIB Download

An SNMP manager application must be utilized in order to access the interface. Integrating a manager into custom station automation programs provides countless possibilities. Alternatively, various third party MIB browser GUI applications are available for free download; however Broadcast Electronics does not endorse any specific application. Simply direct the manager to the Ethernet port for communication across a network.

11.1 Authentication

Data is accessible by using the correct community strings for the desired login level. The formula for these strings is a combination of the login type – chief, user, or operator –, a delimitating '+' character, and the eight digit numerical password associated with that login type. For example, "chief + 12345678" in both the read community and write community passes authentication and allows read and write to essentially every object in the MIB with the appropriate max-access type. User and Operator login levels provide more strict control over what settings can be modified and what commands can be issued in the system.

11.2 Objects

The SNMP interface utilizes tables wherever it makes sense to communicate data in an indexed fashion. To accommodate a scalable transmitter product design, for example, almost all PA data is structured as tables by using the PA number as the index. This works by appending ".1" to the object indicating the single PA in the system. Note that a normal "leaf" node is accessed by appending ".0" as in ...38118.2.2.2.0, the object for system forward power.

12 Backup Control Modes

STXe systems come equipped with two backup control methods. Emergency Control Mode is integrated standard with all systems and allows the system to continue functioning in the event of a system controller failure. The Backup System Control and Exciter feature utilizes an entire STXe system to also allow for full control interfacing with an identical standby Exciter.

12.1 Emergency Control Mode

In the event of a loss in communications with the system controller, all sub-systems enter emergency control mode. Behavior when in this mode depends on user specified emergency power levels. The emergency power level must be set to the desired emergency power level in order to enable the feature, which comes from the factory set at 0 W and is effectively disabled. The system will continue to function at full emergency power as long as the exciter maintains drive to the power amplifier. The power amplifier can only enter emergency power mode from a working state, so it will not unmute or initialize in the emergency power state.

12.2 Standby System Control and Exciter

For complete exciter redundancy an exciter switcher kit can be acquired. These kits supply all required hardware for utilization of standby STXe systems. The switcher system is then paired with a second fully functional two rack unit STXe system.

Detailed information including installation and operation of this optional configuration are contained in an application guide. A copy is included in standard kits and/or inserted in the front of the binder containing this manual if shipped as part of the same order. For electronic copies of this and any other technical documentation please visit <u>http://www.bdcast.com/information-center/</u> and follow navigation on the left side of the page – authorized login is required.

13 Troubleshooting

Some basic information and troubleshooting steps are included below. If problems persist after basic troubleshooting steps are taken, please contact RF Technical Services. Contact information is located on our website at <u>www.bdcast.com</u> and on page iii in the front of this manual.

A fault in any part of the system indicates a complete disruption in normal operation of at least one part of the transmitter system. Once the problem has been identified, a fault reset command should always be issued through diagnostics in any user interface to attempt to recover from fault conditions. If the reset is not successful or a condition that caused a fault still remains, the fault will re-assert.

An alarm typically indicates an abnormal condition that represents a disruption that may resolve itself. Alarms in unexpected situations could indicate serious conditions. Alarms that persist or unexpectedly appear on a regular basis should not be ignored. To get a good feel for what alarms are expended under which conditions, see the alarm details in the sections that follow.

13.1 Event Log

The system event log can be accessed through the Basic Web Interface log page or in its raw form through the event Log tree in SNMP. An event is defined by its index starting with the first saved event at index 1, a timestamp from the system's internal real time clock, an event identification number, and the sub-system where the event triggered. Some events also have context-based parameters that are embedded in the description of the event.

13.2 Standby

The STXe Exciter comes with built-in functionality for a standby controller and exciter – see section 12.2 Standby System Control and Exciter. A system that is in standby is muted and not actively controlling the transmitter. This mode is not intended in a setup that has a single system controller and exciter. Standby system control and exciter setups should have no more than one unit active at a time.

If a system is locked in standby mode, this typically indicates a setup problem. Single system controller and exciter setups require a stub 949-4130 that activates the transmitter. This must be attached to the Broadcast Electronics Interface jack, see section 5.2. Dual system controller and exciter setups require a switcher system, such as ther FW Exciter Switcher product series, that connects to both assemblies through this interface. The switcher must be operated to activate one controller/exciter.

13.3 Failsafe

An asserted failsafe input on the remote station interface is required for operation of the system. The intended usage of this input is to make a loop that passes through safety relays in all critical transmission system components. When any part of the transmission system becomes unsafe, the circuit should open and de-assert the failsafe on the transmitter. When a failsafe condition is active, check all systems that are wired into the failsafe circuit.

13.4 Mute

A mute generally refers to a lack of an RF source in some part of the system, and the affected part depends on the context of the notification. Mute indications can happen at various stages for different reasons, and details in system sections listed here should be considered.

Transmitter mute conditions typically refer to the FM exciter. In internal exciter setups this commonly occurs when:

- There is no power to the exciter
- The mute GPIO input pin on the remote station interface is asserted
- Unmute/Failsafe GPIO input is not asserted
- The BE Interface active input is not asserted
- VPe/XG setup presence GPIO input is active when no VPe/XG is in the system, or is not activated when it is in the system.

13.5 Internal Exciter Diagnostics

Fault/Alarm	Description
Communication Fault	This fault occurs when communication between the System
	Controller and the internal Exciter is nonfunctional.
AFC Unlock Alarm	Automatic frequency control system does not yet have lock.
10MHz Status	Displays INT when exciter is on the Internal reference or EXT for
	when an External reference is used.
Audio SCR Status	Secondary (SCR) Audio displays PRI for primary audio or SEC for
	secondary audio

Table 12 – Exciter Diagnostics Details

76

©2018 Broadcast Electronics

13.6 Power Amplifier Diagnostics

Fault/Alarm	Description
RF Power Supply Fault	This fault activates when a power source failure is detected.
Reflected Power Fault	This fault activates when a sudden increase in reflected power is detected by hardware in the power amplifier.
VSWR Fault	This fault activates when the measured VSWR is greater than the maximum VSWR rating of the system at any power level.
Temperature Fault	This fault activates when the measured internal heat sink temperature exceeds the safe limit.
Current Fault	There is current monitoring on the final stage RF amplifiers. The PA shuts down when measured current on any of these solid state amplifiers exceeds the safe limit.
Hardware Fault	This is an internal self-report of problems in PA control hardware.
Communication Fault	This fault occurs when communication between the system controller and the PA is lost.
Reflected Power Foldback Alarm	During FM only operation, the PA attempts to lower its output power when reflected power approaches dangerous levels. This keeps the transmitter running at reduced power in order to prevent a reflected power fault.
Temperature Foldback Alarm	During FM only operation, the PA attempts to lower its output power when the internal heat sink temperature approaches dangerous levels. This keeps the transmitter running at reduced power in order to prevent a temperature fault.
Current Foldback Alarm	During FM only operation, the PA attempts to lower its output power when the final power transistor current approaches dangerous levels. This keeps the transmitter running at reduced power in order to prevent a current fault.
Muted Input Alarm	This alarm is asserted when in FM-only mode and the RF power from the Exciter to the PA is below the minimum threshold for safe operation. This alarm is not reported when the PA is turned off for any reason.
Railed Alarm	During FM-only operation this indicates a condition where automatic power control has reached its highest or lowest possible control value indicating that the transmitter cannot reach the RF power set-point. The power control system automatically leaves this state if the condition is resolved.

14 Maintenance

These sections detail steps to maintain or replace STXe 500 system modules and spare parts.

14.1 Clean the Air Filter and Check Fans

STXe 500 systems come standard with snap on washable air filters. Air filter cleaning should be a part of regular system maintenance.

While cleaning air filters, air circulation should also be verified in case fans have stopped functioning

To remove the filter from the front of the exciter, use the opening on the bottom to pry the snaps by hand.

Figure 45 – Air Filter Removal

Remove the filter material from the case for thorough cleaning. Use compressed air or water to remove debris.

Figure 46 – Separated Air Filter

Snap the air filter back on once clean.

Carefully pinch to tighten the snaps if the case became loose enough to rattle.

14.2 Remove the Top Cover

To perform remaining module replacement actions in the maintenance section, the top cover must be removed. Full precautions should be taken against electrostatic discharge. Any such shocks may cause permanent damage to any electronic components, especially printed circuit boards.

ENSURE AC POWER INPUT IS COMPLETELY DISCONNECTED BEFORE ACCESSING ANY INTERNAL MODULES

Use a Phillips screwdriver to unscrew all 9 top cover screws and lift the cover.

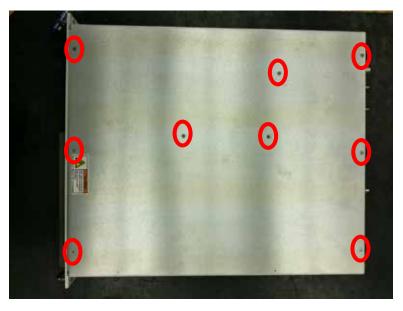


Figure 47 – Top Cover

14.3 Main Power Supply

Figure 48 – Main Power Supply

540-0048
Phillips Screwdriver

Power Supply Board Assembly, 48VDC 1kW

1. Use a Phillips screwdriver to disconnect the red and black DC wiring. Pop the polycarbonate cover off the AC screws and use a Phillips screwdriver to disconnect the three wires.

Figure 49 – Main PS Wires

2. Use a Phillips screwdriver to remove the two screws securing the power supply to the main chassis.

Figure 50 – Main PS Chassis Screws

3. Loosen the internal thumb screws by hand.

Figure 51 – Main PS Internal Thumb Screws

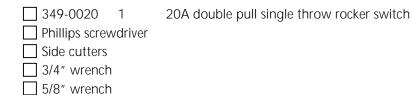
4. Tilt up, slide, and lift the power supply out of the chassis as shown.

Figure 52 – Main PS Extraction

5. Remove the three screws from the main power supply chassis section.

Figure 53 – Main PS Chassis Section

Repeat the previous steps in reverse with the replacement power supply module.



14.4 AC Switch

The AC switch should only be replaced if it is known to have failed. Plastic retaining snaps must be deformed or destroyed to remove the switch from the chassis.

Figure 54 – AC Switch

1. Use a Phillips screwdriver to remove the five screws that secure the back panel to the main chassis: one on either side and three on the bottom.

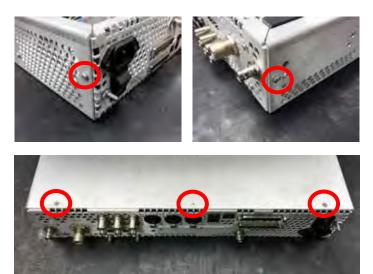


Figure 55 – Back Panel Screws

2. Use a 3/4" wrench to remove the N-Type connector nut and lock washer.

Figure 56 – N-Type Connector Nut

3. Use a 5/8" wrench to remove the sample output BNC nut and lock washer.

Figure 57 – BNC Connector Nut

4. Remove the CPE screw and unsnap the corners.

Figure 58 – CPE Screws and Snaps

5. Carefully lift and rotate the assembly to gain easy access to the AC switch.

Figure 59 – Displaced Back Panel Assembly

6. Use side cutters to cut the AC switch's housing tabs. The switch should then slip through the chassis as shown.

Figure 60 – AC Switch Tabs

7. Exchange wires from the old switch to the replacement switch one at a time to ensure that wires are placed in the correct configuration.

Figure 61 – AC Switch Wires

8. Insert the switch back into the chassis and repeat the initial steps in reverse to replace the back panel and controller/exciter board.

14.5 AC Input and EMI Filter

Figure 62 – AC Input Replacement Parts

1
1
4″
driver

10A 50/60 Hz 250V AC input filter

Cable tie

1-1/2" diameter heat shrink wrap

1. Use side cutters to cut the cable tie.

Figure 63 – AC Cable Tie

2. Cut the shrink wrap.

Figure 64 – Cut Shrink Wrap

©2018 Broadcast Electronics

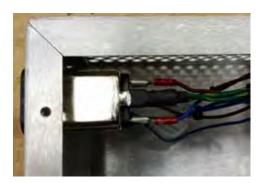


Figure 65 – AC Studs

4. Use a Phillips screwdriver to remove the two screws that secure the input shell to the chassis.

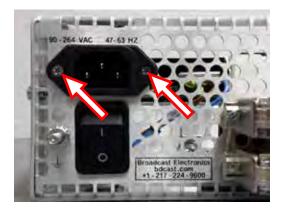


Figure 66 – AC Input Screws

5. Slide the AC assembly out of the chassis. Place its replacement in the same spot, and secure it with the Phillips screws.

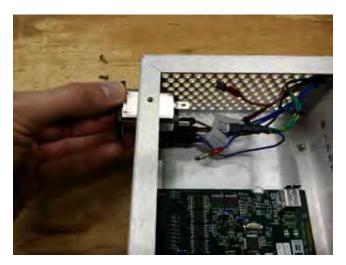


Figure 67 – AC Input Assembly Removal

6. Feed the wires through the shrink wrap. Hold the wrap back and secure the wires on the internal studs. Ensure proper wire placement per wire colors indicated in the figure.

Figure 68 – Internal AC Connections

7. Slide the shrink wrap all the way up and over the AC input assembly. Apply heat with a heat gun.

Figure 69 – Shrink Wrap

8. While the shrink wrap is still malleable, secure it with the cable tie.

14.6 Fan Power Supply

Figure 70 – Fan Power Supply

540-5024	1	P
Phillips Screwdriver		

Power Supply Board Assembly, 24VDC 50W

POWER SUPPLY PARTS MAY HOLD THIER CHARGE FOR MINUTES AFTER AC POWER IS DISCONNECTED. SHOCKS AND BURNS MAY RESULT IF JACKS OR PART LEADS ARE TOUCHED, ESPECIALLY ON THE BOTTOM OF MODULES!

1. Disengage latches on wire connectors and unplug them.

Figure 71 – Fan Power Supply Connectors

2. Use a Phillips screwdriver to remove the four screws that secure the power supply.

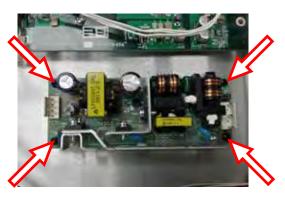


Figure 72 – Fan PS Screws

3. Carefully lift the power supply out of the chassis.

Figure 73 – Fan PS Extraction

Repeat the previous steps in reverse with the replacement power supply module. The cable latches should engage when the cables are fully plugged. Ensure solid latching on all cables.

14.7 Fan

Figure 74 – Fan

380-9008-001	1 or 2	Fan with Connector, 24V 80 mm X 38 mm
Phillips Screwdriver		

1. Slide the fan assembly straight up and out of the chassis by lifting the polycarbonate.

Figure 75 – Fan Assembly Extraction

2. Pinch connector latches and then pull apart to disconnect wires.

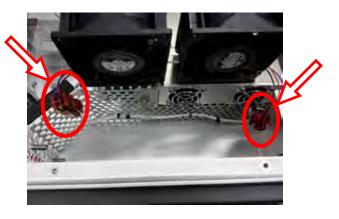


Figure 76 – Fan Connectors

3. Note the front/back and wired corner orientations relative to the polycarbonate cutout.

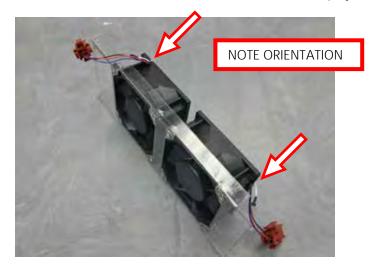


Figure 77 – Fan Orientations

4. Use a Phillips screwdriver to remove the four (or eight) screws and self-locking nuts that secure the fan(s) to the case.

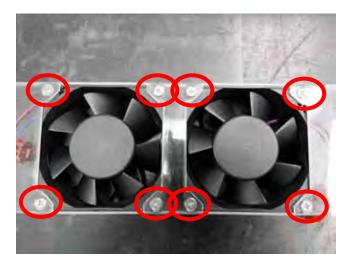
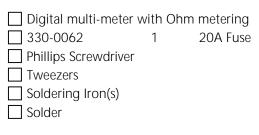


Figure 78 – Fan Screws


Repeat the previous steps in reverse with the replacement fan(s). Ensure fan direction and orientation in the case is proper to direct airflow and minimize strain on cables.

14.8 Fuse – DC Regulator

Figure 79 – 20A DC Fuse

1. Use a Phillips screwdriver to remove the two screws securing the power supply to the main chassis.

Figure 80 – Main PS Chassis Screws

2. Loosen the internal thumb screws by hand.

Figure 81 – Main PS Internal Thumb Screws

Figure 82 – DC Regulator Fuse Access

Figure 83 – DC Regulator Fuse Location

- 5. Use soldering irons to carefully remove the fuse from the circuit board.
- 6. Use tweezers to hold the new fuse in place on the pads. Use a soldering iron to apply heat and add solder as needed.

14.9 DC Regulator

Figure 84 – DC Regulator Board Assembly

919-4212
 Phillips Screwdriver

1. Disengage latches on the blue connectors and pull them. Pull the three white cable connectors. Set the cable ends aside.

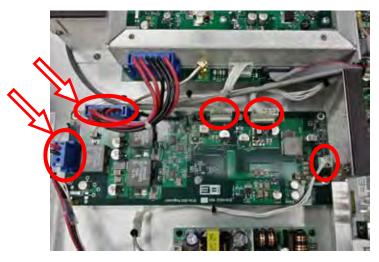


Figure 85 – DC Regulator Cables

2. Use a Phillips screwdriver to remove the three screws.

Figure 86 – DC Regulator Screws

3. Pop the board assembly off the four corner snaps.

Figure 87 – DC Regulator Snaps

4. Lift the board out of the chassis.

Figure 88 – DC Regulator Extraction

Repeat the previous steps in reverse with the replacement DC regulator board assembly.

Figure 89 – 1.5A Low Voltage Fuse

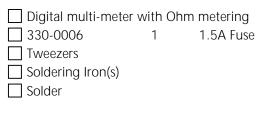


Figure 90 – Low Voltage Fuse Location

- 2. Use soldering irons to carefully remove the fuse from the circuit board.
- 3. Use tweezers to hold the new fuse in place on the pads. Use a soldering iron to apply heat and add solder as needed.

14.11 Fuse – Driver Power Amplifier

Figure 91 – 1.5A Driver Amplifier Fuse

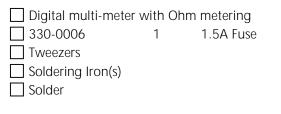


Figure 92 – Driver Fuse Location

- 5. Use soldering irons to carefully remove the fuse from the circuit board.
- 6. Use tweezers to hold the new fuse in place on the pads. Use a soldering iron to apply heat and add solder as needed.

14.12 Fuse – Final Power Amplifier

Figure 93 – 25A Final Amplifier Fuse

🗌 Digital multi-mete	r with Of	nm metering
Tweezers		
330-0063	1	25A Fuse
Soldering Iron(s)		
Solder		

Figure 94 – Final Amplifier Fuse Location

- 2. Use soldering irons to carefully remove the fuse from the circuit board.
- 3. Use tweezers to hold the new fuse in place on the pads. Use a soldering iron to apply heat and add solder as needed.

14.13 Drive Power Amplifier Part

RF power transistors should only be replaced if they are known to have failed. Bending leads to separate from boards during the removal process will cause damage. Fuses and other components in surrounding circuitry may also be damaged depending on the failure mode.

This is a difficult process that should only be attempted by skilled technicians.

Figure 95 – Driver Stage Power Amplifier

210-2918	RF Power Amplifier
700-0028-004	Thermal Compound
6 lb-in (0.6-0.75 Nm)	Torque Phillips Screwdriver
Pliers/tweezers	
Solder	
Soldering Irons	
Solder Wick	

1. Identify the amplifier device to be replaced.

Figure 96 – Driver Amp Location

Figure 97 – Driver RC Parts

- 3. Use a Phillips screwdriver to remove the mounting screws.
- 4. Use a soldering iron and pliers to bend up and separate leads from the circuit board. Remove the part when finished.
- 5. Solder wick residual solder to remove it from the circuit board to prevent lead strain.
- 6. Apply a thin film of thermal compound to the bottom of the replacement amplifier part where the base of the part contacts the heat sink.

Figure 98 – Driver with Thermal Compound Applied

7. Place the part and look at the notch to ensure the proper orientation. Use the Phillips torque wrench to tighten the screws with about 6 in-lb of Torque.

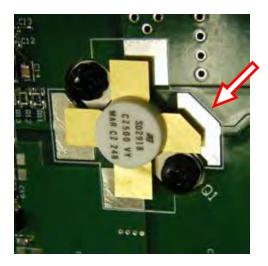
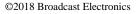



Figure 99 – Driver Placement

- 8. Use pliers and a soldering iron to gently bend the end of a lead to the board one at a time and apply solder. Minimize strain on the leads. Do this for all four leads.
- 9. Place the leaded resistor and the capacitor in series across the part just as before.

Performance of the module after the amplifier part replacement process has been completed may depend on part to part variations of the amplifier parts and surrounding circuitry. If there is degradation in performance please contact BE technical services to arrange to ship the module/system for diagnosis, repair, and re-tuning.

14.14 Final Power Amplifier Part

This is a difficult process that should only be attempted by skilled technicians. The FPA Palate that the part is mounted on can be removed for ease of access. Follow directions in section 14.15 if desired.

- 210-0188 Final Amplifier Part
 700-0028-004 Thermal Compound
 6 lb-in (0.6-0.75 Nm) Torque 3/32" Allen (hex key) wrench
 Pliers/tweezers
 Solder
 Solder Irons
 Solder Wick
 - 1. Use soldering irons to remove the input inductor.

Figure 100 – Final PA Input Inductor

2. Use soldering irons to disconnect the white coaxial cable ends.

Figure 101 – Final PA Output Coaxial Cables

3. Use 3/32" Allen wrench to remove the two mounting screws and all washers.

Figure 102 – Final PA Mounting Screws and Washers

- 4. Use soldering irons on each of the four leads to disconnect the part from the circuit board.
- 5. Lift the part up and out of the Palate.
- 6. Use solder wick with remove residual solder where the new part leads will go.
- 7. Apply a thin film of thermal compound to the entire bottom of the new part.
- 8. Place the part in the mounting location (note the notch location) and secure the screws and washers with a 6 lb-in Torque 3/32" Allen wrench.
- 9. Apply solder to all four leads.
- 10. Use soldering irons and solder as necessary to place the output coaxial cables. Refer to Figure 101.
- 11. Place the input inductor. Refer to Figure 100Figure 100.
- 12. Bend each coaxial cable such that they are both 0.55" + -0.030" from the highest point to the circuit board surface.

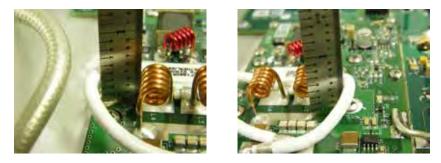


Figure 103 – Final PA Coaxial Cable Heights

Performance of the module after the amplifier part replacement process has been completed may depend on part to part variations of the amplifier parts and surrounding circuitry. If there is degradation in performance please contact BE technical services to arrange to ship the system for diagnosis, repair, and re-tuning.

14.15 Final Power Amplifier Palate

Figure 104 – Power Amplifier Palate

959-4500	500W PA Palate	
700-0028-004	Thermal Compound	
Phillips screwdriver		
Pliers/tweezers		
Solder		
Two Large Soldering Irons		

1. User large soldering irons to disconnect DC power input.

Figure 105 – Palate DC Input

2. User large soldering irons, one on the outer conductor and one on the inner conductor, to lift the RF output coaxial cable.

Figure 106 – Final RF Output

©2018 Broadcast Electronics

3. Do not remove the screws that secure the board to the palate. Use a Phillips screwdriver to remove the 7 palate mounting screws and lock washer. Bend the white coaxial cable up or down as needed.

Figure 107 – Palate Screws

- 4. Lift the palate straight up to disengage the connector.
- 5. Spread a thin film of thermal compound on the bottom of the replacement palate.

Figure 108 – Palate with Thermal Compound

- 6. Repeat steps 1 through 4 in reverse to install the new final PA palate.
- 7. Once mounted successfully, bend each white coaxial cable up such that they are both 0.55" +/-0.030" from the highest point to the circuit board surface. Bend the output coax such that it is 0.80" +/-0.030" from the highest point to the circuit board surface.

Figure 109 – Palate Coaxial Cable Heights

14.16 Power Amplifier and Low Pass Filter Assembly

This section details a difficult process that should only be attempted by skilled technicians.

Figure 110 – Power Amplifier Assembly

Figure 111 – Low Pass Filter Circuit Board Assembly

959-4500-100	1	500W PA Assembly
And/Or		
919-4060-100	1	Low Pass Filter Board Assembly

Phillips Screwdriver

Extra-Long/Short Phillips Screwdriver

3/4" wrench

- 5/8" wrench
- 5/16" Nut Driver

Figure 112 – Bottom PA Screws

2. Use a Phillips screwdriver to remove the screw on the side.

Figure 113 – Side PA Screw

3. Insert an extra-long Phillips screwdriver through the hole in the back of the chassis and unscrew the PA screw. An extra-short Phillips screwdriver that can fit inside the cavity is also valid.

Figure 114 – Front PA Screw

4. Use a 3/4" wrench to remove the N-Type connector nut and lock washer.

Figure 115 – RF OUT Nut

5. Use a 5/8" wrench to remove the sample output BNC nut and lock washer.

Figure 116 – RF Sample Nut

6. Disconnect all cables from the PA assembly.

Figure 117 – PA Assembly Cables

7. Slide the N-Type and BNC connectors out of their D-holes and displace the PA assembly.

Figure 118 – CPE Screw and Snap

9. Gently flex the board to move the low pass filter ribbon cable out from beneath the board assembly.

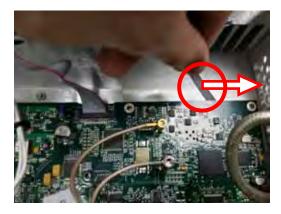


Figure 119 – Low Pass Filter Ribbon

- 10. Lift the PA assembly straight up out of the chassis and set it next to the system.
- 11. Use a Phillips screwdriver to remove the five screws that secure the low pass filter board assembly.

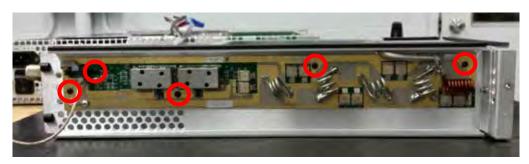


Figure 120 – Low Pass Filter Screws

12. Disconnect the ribbon cable from the board assembly.

Figure 121 – Low Pass Filter Ribbon

13. Gently flex the board forward and slide the ribbon cable back through the slot in the chassis.

Figure 122 – Low Pass Filter Ribbon Extraction

14. Prop the PA assembly up so that the low pass filter board assembly is almost horizontal (this keeps solder from dripping out of control). Use large soldering irons to disconnect the coaxial cable, one on the center conductor and one on the outer conductor.

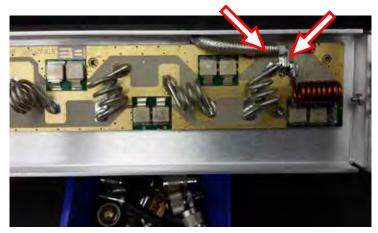


Figure 123 – Low Pass Filter RF Input

©2018 Broadcast Electronics

15. Set the PA assembly back down and use large soldering irons in the same way to disconnect the final PA palate output as shown.

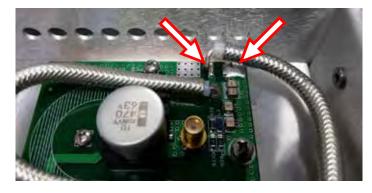


Figure 124 – Final PA Palate RF Output

16. Use a 5/16" nut driver to remove the self-locking nut that secures the low pass filter.

Figure 125 – Low Pass Filter Nut

- 17. Slide the low pass filter out of the chassis section. If replacing the low pass filter only, the next three steps can be skipped.
- 18. Use a Phillips screwdriver to remove the three screws that secure the chassis section to the PA heat sink.

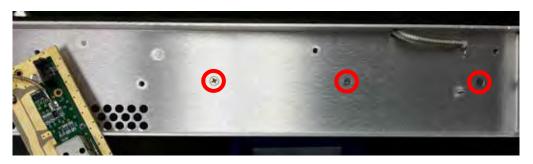


Figure 126 – Low Pass Filter Chassis Section Screws

19. Use a 5/16" nut driver to remove the self-locking nut that secures low pass filter chassis section.

Figure 127 – Low Pass Filter Chassis Nut

20. Use a Phillips screwdriver to remove the screw that holds the end of the low pass filter chassis section.

Figure 128 – Chassis Section Screw

Repeat the previous steps in reverse with the replacement PA module, the replacement low pass filter board assembly, or both.

Performance of the system after the amplifier or low pass filter replacement process has been completed may depend on part to part variations of the amplifier and surrounding circuitry. If there is degradation in performance please contact BE technical services to arrange to ship the system for diagnosis, repair, and re-tuning.

14.17 Front Panel Display

Figure 129 – Front Display Board Assembly

□ 919-4207 1 STX CPE Display Board Assembly □ Short Phillips Screwdriver

1. Use a short Phillips screwdriver to remove the two screws securing the board assembly.

Figure 130 – Front Display Screw

2. Disengage the latch on the cable harness and disconnect it from the display board.

Figure 131 – Front Display Plug

3. Reach in the left of the board and unsnap the two corners.

Figure 132 – Front Display Left Snaps

4. Angle the board out and unsnap the other two corners.

Figure 133 – Front Display Right Snaps

Repeat the previous steps in reverse with the replacement front panel display board assembly.

14.18 Extended I/O

Figure 134 – Extended I/O Board

3/16" Nut Driver

1. Unplug the cable harness by pinching the latches and lifting.

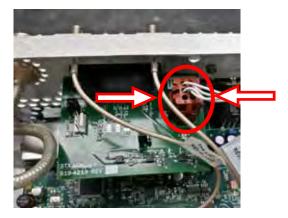


Figure 135 – Extended I/O Cable

2. Use a 3/16" nut driver to remove the jack screws and lock washers.

Figure 136 – Extended I/O Jack Screws

Repeat the previous steps in reverse with the replacement extended I/O board assembly.

14.19 Controller Exciter

Figure 137 – Controller Exciter Board

919-4200-100

STX Controller Exciter Board Assembly

Phillips Screwdriver

3/16" Nut Driver

9/16" wrench (or machine-thinned 9/16" deep-well nut driver)

1

- 1. Follow the steps in section 0 to remove the extended I/O board.
- 2. Use a 3/16" nut driver to unscrew the four D-Subminiature jackscrews and lock washers that secure the GPIO and BE INTERFACE jacks.

Figure 138 – CPE D-Subminiature Jackscrews

3. Use a Phillips screwdriver to remove the six screws that secure the XLR jacks.

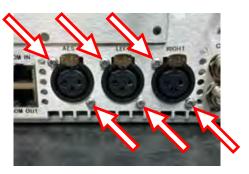


Figure 139 – CPE XLR Screws

4. Use a 9/16" wrench to loosen the six BNC nuts. Space is tightly constrained, and once the nuts are loose they can be removed by hand.

Figure 140 – CPE BNC Nuts

5. Disconnect all cables from the Controller Exciter board. Unseat the cables from the notch in the chassis wall and set them out of the way.

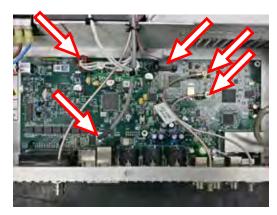


Figure 141 – CPE Cables

6. Pop the polycarbonate cover and use a Phillips screwdriver to loosen and slide the AC wiring off of the main power supply. This allows clearance during board extraction.

Figure 142 – Main PS AC Wiring

7. Use a Phillips screwdriver to remove the screw securing the board.

Figure 143 – CPE Screw

8. Gently lift the board next to each of the two snaps and free the board.

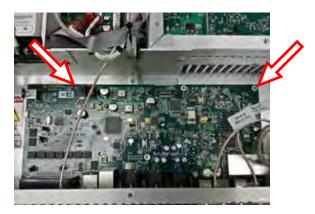


Figure 144 – CPE Snaps

9. Slide the coaxial cable forward in the harness to allow required clearance.

Figure 145 - Coaxial Cable Displacement

10. Angle the back of the board up and slide the connectors back until the XLR latches contact the chassis as shown. Gently tuck the latches under to free the board.

Figure 146 – Board Extraction

Repeat the previous steps in reverse with a replacement Controller Exciter board assembly.

©2018 Broadcast Electronics