FM-25T 25 KILOWATT
FM-30T 30 KILOWATT
FM-35T 35 KILOWATT
FM BROADCAST
TRANSMITTERS

IMPORTANT INFORMATION

EQUIPMENT LOST OR DAMAGED IN TRANSIT.

When delivering the equipment to you, the truck driver or carrier's agent will present a receipt for your signature. Do not sign it until you have: 1) inspected the containers for visible signs of damage and 2) counted the containers and compared with the amount shown on the shipping papers. If a shortage or evidence of damage is noted, insist that notation to that effect be made on the shipping papers before you sign them.
Further, after receiving the equipment, unpack it and inspect thoroughly for concealed damage. If concealed damage is discovered, immediately notify the carrier, confirming the notification in writing, and secure an inspection report. This item should be unpacked and inspected for damage WITHIN 15 DAYS after receipt. Claims for loss or damage will not be honored without proper notification of inspection by the carrier.

RF PRODUCT TECHNICAL ASSISTANCE - REPAIR SERVICE - REPLACEMENT PARTS.

Technical assistance is available from Broadcast Electronics by letter, prepaid telephone, fax, or E-mail. Equipment requiring repair or overhaul should be sent by common carrier, prepaid, insured, and well protected. If proper shipping materials are not available, contact the Customer Service Department for a shipping container. Do not the mail equipment. We can assume no liability for inbound damage, and necessary repairs become the obligation of the shipper. Prior arrangement is necessary. Contact the Customer Service Department for a Return Authorization.
Emergency and warranty replacement parts may be ordered from the following address. Be sure to include the equipment model number, serial number, part description, and part number. Non-emergency replacement parts may be ordered directly from the Broadcast Electronics stock room by fax at the number shown below.

FACILITY CONTACTS -

Broadcast Electronics, Inc. - Quincy Facility
4100 N. 24th St. P.O. BOX 3606
Quincy, Illinois 62305
Telephone: (217) 224-9600
Fax: (217) 224-9607
E-Mail: General - bdcast@bdcast.com
Web Site: www.bdcast.com

RF PRODUCT TECHNICAL ASSISTANCE - REPAIR - EMERGENCY/WARRANTY REPLACEMENT PARTS -

Telephone: (217) 224-9600
E-Mail: rfservice@bdcast.com
Fax: (217) 224-9607
NON-EMERGENCY REPLACEMENT PARTS -
Fax: (217) 224-9609

RETURN, REPAIR, AND EXCHANGES.

Do not return any merchandise without our written approval and Return Authorization. We will provide special shipping instructions and a code number that will assure proper handling and prompt issuance of credit. Please furnish complete details as to circumstances and reasons when requesting return of merchandise. All returned merchandise must be sent freight prepaid and properly insured by the customer.

WARRANTY ADJUSTMENT.

Broadcast Electronics, Inc. warranty is included in the Terms and Conditions of Sale. In the event of a warranty claim, replacement or repair parts will be supplied F.O.B. factory. At the discretion of Broadcast Electronics, the customer may be required to return the defective part or equipment to Broadcast Electronics, Inc. F.O.B. Quincy, Illinois. Warranty replacements of defective merchandise will be billed to your account. This billing will be cleared by a credit issued upon return of the defective item.

PROPRIETARY NOTICE.

This document contains proprietary data of Broadcast Electronics, Inc. No disclosure, reproduction, or use of any part thereof may be made except by prior written permission.

MODIFICATIONS.

Broadcast Electronics, Inc. reserves the right to modify the design and specifications of the equipment in this manual without notice. Any modifications shall not adversely affect performance of the equipment so modified.

ALL PERSONS WHO WORK WITH OR ARE EXPOSED TO POWER TUBES, POWER TRANSISTORS, OR EQUIPMENT WHICH UTILIZES SUCH DEVICES MUST TAKE PRECAUTIONS TO PROTECT THEMSELVES AGAINST POSSIBLE SERIOUS BODILY INJURY. EXERCISE EXTREME CARE AROUND SUCH PRODUCTS. UNINFORMED OR CARELESS OPERATION OF THESE DEVICES CAN RESULT IN POOR PERFORMANCE, DAMAGE TO THE DEVICE OR PROPERTY, SERIOUS BODILY INJURY, AND POSSIBLY DEATH.
DANGEROUS HAZARDS EXIST IN THE OPERATION OF POWER TUBES AND POWER TRANSISTORS
The operation of power tubes and power transistors involves one or more of the following hazards, any one of which, in the absence of safe operating practices and precautions, could result in serious harm to personnel.
A. HIGH VOLTAGE - Normal operating voltages can be deadly. Additional information follows.
B. RF RADIATION - Exposure to RF radiation may cause serious bodily injury possibly resulting in blindness or death. Cardiac pacemakers may be affected. Additional information follows.
C. BERYLLIUM - OXIDE POISONING - Dust or fumes from BeO ceramics used as thermal links with conduction cooled power tubes and power transistors are highly toxic and can cause serious injury or death. Additional information follows.
D. HOT SURFACES - Surfaces of air-cooled radiators and other parts of tubes can reach temperatures of several hundred degrees centigrade and cause serious burns if touched. Additional information follows.
E. RF BURNS - Circuit boards with RF power transistors contain high RF potentials. Do not operate an RF power module with the cover removed.

HIGH VOLTAGE

Many power tubes operate at voltages high enough to kill through electrocution. Personnel should always break the primary circuits of the power supply and discharge high voltage capacitors when direct access to the tube is required.

RADIO FREQUENCY RADIATION

Exposure of personnel to RF radiation should be minimized, personnel should not be permitted in the vicinity of open energized RF generating circuits, or RF transmission systems (waveguides, cables, connectors, etc.), or energized antennas. It is generally accepted that exposure to "high levels" of radiation can result in severe bodily injury including blindness. Cardiac pacemakers may be affected.
The effect of prolonged exposure to "low level" RF radiation continues to be a subject of investigation and controversy. It is generally agreed that prolonged exposure of personnel to RF radiation should be limited to an absolute minimum. It is also generally agreed that exposure should be reduced in working areas where personnel heat load is above normal. A $10 \mathrm{~mW} / \mathrm{cm}^{2}$ per one tenth hour average level has been adopted by several U.S. Government agencies including the Occupational Safety and Health Administration (OSHA) as the standard protection guide for employee work environments. An even stricter standard is recommended by the American National Standards Institute which recommends a $1.0 \mathrm{~mW} / \mathrm{cm}^{2}$ per one tenth hour average level exposure between 30 Hz and 300 mHz as the standard employee protection guide (ANSI C95.1-1982).
RF energy must be contained properly by shielding and transmission lines. All input and output RF connections, such as cables, flanges and gaskets must be RF leakproof. Never operate a power tube without a properly matched RF energy absorbing load attached. Never look into or expose any part of the body to an antenna or open RF generating tube or circuit or RF transmission system while energized. Monitor the tube and RF system for RF radiation leakage at regular intervals and after servicing.

DANGER - BERYLLIUM OXIDE CERAMICS (BeO) - AVOID BREATHING DUST OR FUMES

BeO ceramic material is used as a thermal link to carry heat from a tube or transistor to the heat sink. Do not perform any operation on any BeO ceramic which might produce dust or fumes, such as grinding, grit blasting, or acid cleaning. Beryllium oxide dust or fumes are highly toxic and breathing them can result in serious personal injury or death. BeO ceramics must be disposed of only in a manner prescribed by the device manufacturer.

HOT SURFACES

The anode portion of power tubes is often air-cooled or conduction-cooled. The air-cooled external surface normally operates at a high temperature (up to 200° to $300^{\circ} \mathrm{C}$). Other portions of the tube may also reach high temperatures, especially the cathode insulator and the cathode/heater surfaces. All hot surfaces may remain hot for an extended time after the tube is shut off. To prevent serious burns, take care to prevent and avoid any bodily contact with these surfaces both during and for a reasonable cooling down period after tube operation.

PUBLICATION ADDENDUM
 SPECIAL ASSEMBLY REQUIREMENTS
 FM-25T/FM-30T/FM-35T TRANSMITTERS

1-1. INTRODUCTION.

1-2. Due to special shipping requirements, selected components of the Broadcast Electronics FM-25T/FM-30T/FM-35T transmitters have been disassembled to prevent damage during shipment. This publication addendum provides information required for the re-assembly of the transmitter IN ADDITION TO the information provided in SECTION II, INSTALLATION of FM-25T/FM-30T/FM-35T instruction manual 597-0096-004. Perform the following assembly instructions before proceeding to the procedures described in the manual.

1-3. SPECIAL ASSEMBLY.

1-4. GENERAL. Components removed from the transmitter contain identification tags to permit reinstallation. Items such as interconnecting wires, cables, and miscellaneous small parts are taped or tied for shipment. Remove all tape, string, and packing material used for shipping purposes as each item is installed.

1-5. Terminal blocks and wires contain identification tags with information regarding reconnection. Mounting hardware will be placed in small bags attached to each removed component or inserted in the component mounting holes.

WARNING

WARNING ENSURE NO PRIMARY POWER IS CONNECTED TO THE TRANSMITTER BEFORE PROCEEDING.

1-6. HIGH VOLTAGE POWER SUPPLY CABINET. Install components removed from the high voltage power supply cabinet by performing the following procedures. Ensure no primary power is connected to the transmitter before attempting any component installation.

1-7. Power Supply Cabinet Base-Plate. Refer to FIGURE 1, page 3 and install the power supply cabinet base-plate as follows:
A. Install choke L300 on the base plate as shown. Refer to Figure 1 Detail C for the hardware connections.
B. Install capacitor C300 on the base plate as shown.
C. Install transformer T300 on the base plate as follows:

1. Place the power supply cabinet near the desired location at the transmitter site.
2. Move the shipping skid with transformer T300 adjacent to the rear of the power supply cabinet.
3. Align the shipping skid with the power supply cabinet bottom panel.
4. Slide T300 on to the power supply cabinet base plate in the location as shown.

CAUTION

ENSURE THE JUMPER WIRE BETWEEN THE TERMINALS ON CAPACITOR C300 IS REMOVED.

D. Refer to FIGURE 1, page 3, Detail B and connect the power supply cabinet ground strap to the transformer mounting support as shown.
E. Remove the jumper wire between the terminals on capacitor C300.
F. Connect the wires to the plate supply transformer, choke, and capacitor as shown. Route wire 75 to capacitor C300 using the ty-pads on the frame of choke L300.

WARNING ENSURE NO PRIMARY POWER IS CONNECTED TO THE TRANSMITTER BEFORE PROCEEDING.
WARNING

1-8. PA CABINET. Install components in the PA cabinet as follows.
1-9. RF Enclosure. Refer to FIGURE 2, page 5, and install components in the RF enclosure as follows:
A. Insert the chimney assembly in the enclosure as shown.
B. Insert the front section of the cavity shelf into the enclosure as shown. Mount the shelf in place using the brass hardware provided.
1-10. Cavity Resistor Installation (For FM-35T Only). Locate the 100 Ohm, 150 watt suppressor resistor in the accessory kit and install R206 in the PA cavity as follows:
A. Refer to details A and B in FIGURE 2, page 5, and install R206 using the hardware supplied in the porcelain and metal stand-offs. Ensure the resistor clamp hardware is positioned in relation to the PA cavity wall as indicated.

1-11. Blower Assembly. The transmitter blower assembly has been secured to the cabinet rail for shipment. Ensure all shipping materials are removed from the blower assembly.
1-12. Tuning Line. Insert the transmitter tuning line and flange into the PA cabinet RF enclosure. Secure the mounting flange with the hardware provided. Attach the tuning cable to the drive assembly on the top of tuning line.

WARNING ENSURE NO PRIMARY POWER IS CONNECTED TO

 the transmitter before proceeding.1-13. DRIVER CABINET. For transmitters equipped with an FX-50 exciter, refer to FIGURE 3, page 6, and install the exciter and the optional stereo generator in the driver cabinet as shown. The modular components are installed by lifting each unit onto the slide-rails. Connect the cables to the units as shown.

COPYRIGHT © 2004 BROADCAST ELECTRONICS, INC
597-0096-201
FIGURE 2. RF ENCLOSURE COMPONENT INSTALLATION

$4 \begin{aligned} & \text { WARNING } \\ & 4 . \text { WARNING }\end{aligned}$ $44 \begin{aligned} & \text { WARNING } \\ & 7 \downarrow \text { WARNING }\end{aligned}$

ENSURE NO PRIMARY POWER IS CONNECTED TO THE TRANSMITTER BEFORE PROCEEDING.

1-14. PA/DRIVER CABINET INTERCONNECTIONS. Refer to FIGURE 4, page 7 and perform the PA/Driver cabinet interconnections as follows:
A. Connect the wires between the PA cabinet and the driver cabinet as shown.
B. Remove the hardware securing the PA cabinet ground strap to the cabinet rail.
C. Insert the PA cabinet ground strap on the driver cabinet ground strap and secure the mounting hardware.
D. Using the hardware provided, bolt the PA cabinet to the driver cabinet in the front and rear rail locations shown in FIGURE 4, page 7.

FIGURE 3. EXCITER INSTALLATION

597-0096-402
FIGURE 4. PA/DRIVER CABINET INTERCONNECTIONS

SCOPE OF MANUAL

This manual consists of two sections which provides the following information for the Broadcast Electronics FM-25T, FM-30T and FM-35T FM Broadcast Transmitters.
A. PART I - Contains information relative to installation, operation, and maintenance applicable to the overall transmitter.
B. PART II - Contains detailed information for the following transmitter modular units.

1. IPA
2. TRANSMITTER CONTROLLER

PART I - TABLE OF CONTENTS

PARAGRAPH

SECTION I
1-1
1-3
1-5
1-8
1-10
1-12
1-14

SECTION II
2-1
2-3
2-6
2-7
2-9
2-13
2-17
2-19
2-26
2-30
2-35
2-48
2-75
2-111
2-112
2-113
2-114
2-117
2-118
2-119
2-120
2-124
2-132

GENERAL INFORMATION
INTRODUCTION 1-1
RELATED PUBLICATIONS $1-1$
EQUIPMENT DESCRIPTION $1-1$
TRANSMITTER CONFIGURATIONS 1-1
OPTIONAL EQUIPMENT 1-5
ACCESSORIES AND SPARE PARTS KITS $1-5$
EQUIPMENT SPECIFICATIONS 1-6

INSTALLATION

INTRODUCTION $2-1$
UNPACKING $2-1$
INSTALLATION REQUIREMENTS $2-1$
ENVIRONMENTAL $2-1$
COOLING AIR 2-1
PRIMARY POWER 2-1
INSTALLATION $2-2$
EQUIPMENT PLACEMENT 2-2
COMPONENT INSTALLATION $2-10$
HIGH VOLTAGE POWER SUPPLY CABINET 2-11
DRIVER CABINET 2-11
PA CABINET 2-13
REMOTE CONTROL $2-16$
WIRING 2-21
TRANSFORMER TAPS $2-21$
INPUT VOLTAGE CHECK 2-21
CABINET INTERCONNECTIONS $2-21$
OPTIONAL EQUIPMENT WIRING 2-27
SIGNAL INPUTS $\quad 2-27$
FAILSAFE INTERLOCK $2-27$
AC POWER CONNECTIONS $2-27$
INITIAL CHECKOUT $2-30$
AC INPUT PHASE SEQUENCE CHECKOUT $2-30$

PARAGRAPH
2-139
2-163
2-171
2-181

SECTION III OPERATION
3-1
3-3
3-5
3-6
3-16
3-18
3-20
3-22
3-24

SECTION IV

4-1
4-4
4-5
4-10
4-13
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-28
4-30
4-31
4-32
4-33
4-34
4-36
4-39
4-40
4-41
4-47
4-48
4-50
4-56
4-61
4-63
4-64
TUBE LIFE

BUTTON

PAGE NO.

CONTROLLER AND INTERLOCK CHECKOUT 2-31

BLOWER PHASING 2-33
EXCITER CHECKOUT 2-33
PRELIMINARY OPERATION AND TUNING $2-34$

INTRODUCTION 3-1
CONTROLS AND INDICATORS 3-1
OPERATION 3-1
TURN ON 3-1
TURN OFF 3-4
OPERATING THE TRANSMITTER FOR MAXIMUM 3-4
AC LINE VOLTAGE MONITOR CONTROLS 3-4
(FM-30T AND FM-35T TRANSMITTERS ONLY)
POWER SUPPLY CIRCUIT BREAKER TEST 3-7
CONTINUOUSLY FLASHING CONTROLLER 3-7 SWITCH/INDICATOR

THEORY OF OPERATION
INTRODUCTION 4-1
ELECTRICAL DESCRIPTION 4-1
FM EXCITER 4-1
FXI 60 DIGITAL EXCITER 4-1
INTERMEDIATE POWER AMPLIFIER UNIT 4-2
POWER AMPLIFIER 4-2
POWER AMPLIFIER CAVITY 4-2
OUTPUT COUPLING 4-5
OUTPUT TUNING 4-5
NEUTRALIZATION 4-5
SECOND HARMONIC SUPPRESSOR 4-5
OUTPUT CIRCUIT 4-5
TRANSMITTER CONTROLLER 4-5
AUTOMATIC RF OUTPUT LEVEL CONTROL 4-6
VSWR FOLDBACK PROTECTION 4-6
SOFT START 4-6
MOMENTARY POWER INTERRUPTION 4-6
OVERLOADS 4-6
INDICATORS 4-6
METERING 4-7
EXCITER METERING 4-7
THREE-PHASE AC VOLTAGE MONITOR 4-7
POWER SUPPLIES 4-7
DETAILED DESCRIPTION 4-8
POWER SUPPLIES 4-8
SEQUENCE OF OPERATION 4-11
PA PLATE POWER SUPPLY 4-11
PA SCREEN POWER SUPPLY 4-12
PA CONTROL GRID BIAS POWER SUPPLY 4-12
PA FILAMENT SUPPLY 4-12

PARAGRAPH		PAGE NO.
4-65	RF CIRCUITRY	4-12
4-66	FM EXCITER	4-12
4-67	INTERMEDIATE POWER AMPLIFIER UNIT	4-15
4-71	POWER AMPLIFIER	4-15
4-82	AUTOMATIC POWER CONTROL	4-17
SECTION V	MAINTENANCE	
5-1	INTRODUCTION	5-1
5-3	SAFETY CONSIDERATIONS	5-1
5-9	FIRST LEVEL MAINTENANCE	5-2
5-11	MISCELLANEOUS	5-2
5-13	CONTROLLER BATTERY	5-2
5-15	AIR FILTERS	5-2
5-18	BLOWER MAINTENANCE	5-3
5-22	SECOND LEVEL MAINTENANCE	5-3
5-24	GENERAL	5-3
5-25	PA STAGE	5-3
5-27	IPA UNIT	5-4
5-28	ADJUSTMENTS	5-5
5-30	AM NOISE	5-5
5-39	CONTROL GRID BIAS LEVEL ADJUSTMENT	5-6
5-40	PLATE CURRENT METER CALIBRATION	5-7
5-41	SECOND HARMONIC SUPPRESSOR	5-7
5-62	NEUTRALIZATION	5-9
5-97	TRANSMITTER POWER LEVEL CHANGE	5-13
5-99	PROCEDURE	5-13
5-108	TRANSMITTER FREQUENCY CHANGE	5-16
	PROCEDURE	
5-109	GENERAL	5-16
5-123	TROUBLESHOOTING	5-22
5-126	COMPONENT REPLACEMENT ON CIRCUIT	5-25
	BOARDS	
SECTION VI	PARTS LIST	
6-1	INTRODUCTION	6-1
SECTION VII	DRAWINGS	
7-1	INTRODUCTION	7-1
APPENDIX A	MANUFACTURERS DATA	
A-1	INTRODUCTION	A-1
	LIST OF TABLES	
TABLE NO.	DESCRIPTION	PAGE NO.
1-1	FM-25T, FM-30T AND FM-35T ELECTRICAL	1-6
	CHARACTERISTICS	
1-2	FM-25T, FM-30T AND FM-35T PHYSICAL AND	1-8
	ENVIRONMENTAL CHARACTERISTICS	
3-1	FM-25T/FM-30T/FM-35T POWER SUPPLY CABINET	3-7
	CONTROLS AND INDICATORS	

TABLE NO.	DESCRIPTION	PAGE NO.
3-2	FM-25T/FM-30T/FM-35T PA CABINET CONTROLS AND INDICATORS	3-7
3-3	FM-25T/FM-30T/FM-35T DRIVER CABINET CONTROLS AND INDICATORS	3-9
3-4	INDICATOR CHECKLIST	3-13
5-1	FM-25T TYPICAL METER INDICATIONS, 25 kW POWER	5-22
5-2	FM-30T TYPICAL METER INDICATIONS, 30 kW POWER OUTPUT	5-22
5-3	FM-35T TYPICAL METER INDICATIONS, 35 kW RF POWER OUTPUT	5-23
5-4	FM-25T TYPICAL POWER DEMAND, 25 kW POWER OUTPUT	5-23
5-5	FM-30T TYPICAL POWER DEMAND, 30 kW POWER OUTPUT	5-23
5-6	FM-35T TYPICAL POWER DEMAND, 35 kW POWER OUTPUT	5-23
6-1	FM-25T/FM-30T/FM-35T PARTS LIST INDEX	6-1
	LIST OF ILLUSTRATIONS	
FIGURE NO.	DESCRIPTION	PAGE NO.
1-1	FM-25T TRANSMITTER	1-2
1-2	FM-30T TRANSMITTER	1-3
1-3	FM-35T TRANSMITTER	1-4
2-1	FM-25T/FM-30T/FM-35T TRANSMITTER INSTALLATION	2-3
2-2	ACCEPTABLE AC POWER INPUT CONFIGURATIONS	2-9
2-3	CABINET MOVING PROVISION	2-10
2-4	IPA UNIT RF POWER MODULE INSTALLATION	2-12
2-5	RF OUTPUT LINE ASSEMBLY	2-15
2-6	REMOTE CONTROL INTERFACING	2-17
2-7	POWER TRANSFORMER WIRING	2-22
2-8	CABINET INTERCONNECTIONS, ADJACENT POWER SUPPLY CABINET INSTALLATION	2-24
2-9	CABINET INTERCONNECTIONS, REMOTE POWER SUPPLY CABINET INSTALLATION	2-26
2-10	OPTIONAL EQUIPMENT WIRING	2-28
2-11	PRIMARY AC WIRING	2-29
2-12	BLOWER ROTATION	2-33
3-1	FM-25T/FM-30T/FM-35T POWER SUPPLY CABINET CONTROLS AND INDICATORS	3-2
3-2	FM-25T/FM-30T/FM-35T PA CABINET CONTROLS AND INDICATORS	3-3
3-3	FM-25T/FM-30T/FM-35T DRIVER CABINET CONTROLS AND INDICATORS	3-5
4-1	FM-25T/FM-30T/FM-35T BLOCK DIAGRAM	4-3
4-2	FM-25T/FM-30T/FM-35T POWER SUPPLY SIMPLIFIED SCHEMATIC	4-9
4-3	FM-25T/FM-30T/FM-35T RF CIRCUIT SIMPLIFIED SCHEMATIC	4-13
4-4	PA CAVITY	4-17
5-1	FM-25T/FM-30T/FM-35T TYPICAL PA EFFICIENCY	5-4
5-2	HUM NULL CONTROL LOCATION	5-6
5-3	SECOND HARMONIC SUPPRESSOR ADJUSTMENT	5-8
5-4	COARSE NEUTRALIZATION ADJUSTMENTS	5-12

FIGURE NO.
DESCRIPTION
PAGE NO.
5-5 COMPONENT PROGRAMMING FOR POWER LEVEL CHANGES 5-15
5-6 FM-25T/FM-30T/FM-35T COARSE TUNING ADJUSTMENTS 5-17
5-7 COMPONENT PROGRAMMING FOR FREQUENCY CHANGES $5-19$
5-8 FM-35T FREQUENCY PROGRAMMING $5-20$
5-9 FM-25T/FM-30T/FM-35T POWER SUPPLY CABINET $5-25$ COMPONENT LOCATOR
5-10 FM-25T/FM-30T/FM-35T PA CABINET COMPONENT LOCATOR 5-27
5-11 RF ENCLOSURE COMPONENT LOCATOR 5-29
5-12 PA INPUT CIRCUIT COMPONENT LOCATOR 5-30
5-13 FM-25T/FM-30T/FM-35T DRIVER CABINET 5-32 COMPONENT LOCATOR

PART II - TABLE OF CONTENTS

I - IPA
II - TRANSMITTER CONTROLLER

SECTION I GENERAL INFORMATION

1-1. INTRODUCTION.

1-2. Information presented by this section provides a general description of the Broadcast Electronics FM-25T, FM-30T and FM-35T FM transmitters and lists equipment specifications.

1-3. RELATED PUBLICATIONS.

1-4. The following list of publications provides data for equipment associated with the FM-25T, FM-30T and FM-35T transmitters.

PUBLICATION NUMBER
597-1050
597-0008-004
597-9900
597-0541

EQUIPMENT

FX-50 FM Exciter
FC-30 SCA Generator
LYNX FM Digital Stereo Generator
FXi 60 FM Digital Exciter

1-5. EQUIPMENT DESCRIPTION.

1-6. The Broadcast Electronics FM-25T, FM-30T and FM-35T are one-tube FM transmitters designed for continuous operation in the 87.5 MHz to 108 MHz broadcast band (refer to FIGURE 1-1 through FIGURE 1-3, pages 1-2 through 1-4). Specific transmitter features include: a folded half-wave cavity PA stage, a microprocessor control system, a solid-state intermediate-power-amplifier (IPA) unit, and a solid-state exciter with a digital frequency synthesizer.

1-7. The transmitter RF power amplifier, IPA unit, FM exciter, and control circuitry is housed in a single double-cubicle cabinet. The high voltage power supply is housed in a separate cabinet which may be located remotely from the $\mathrm{PA} /$ driver cabinet if desired. The following text provides ordering information for various transmitter configurations, optional equipment, and accessories and recommended spare parts kits.

1-8. TRANSMITTER CONFIGURATIONS.
1-9. The FM-25T, FM-30T and FM-35T may be ordered in the following configurations:

FM-25T TRANSMITTER

P/N
909-0025-200

909-0025-380

909-0133-100

DESCRIPTION
FM-25T Transmitter complete with FX-50 FM Exciter, $208 / 240 \mathrm{~V}$ ac three-phase 60 Hz operation, high voltage power supply adjacent to $\mathrm{PA} /$ driver cabinet.
FM-25T Transmitter complete with FX-50 FM Exciter, $339 / 437 \mathrm{~V}$ ac three-phase 50 Hz operation, high voltage power supply adjacent to $\mathrm{PA} /$ driver cabinet.
Kit, FM-30T/FM-35T transmitter less exciter.

COPYRIGHT © 2004 BROADCAST ELECTRONICS, INC

FIGURE 1-1. FM-25T TRANSMITTER

COPYRIGHT © 2004 BROADCAST ELECTRONICS, INC
597-0096-1
FIGURE 1-2. FM-30T TRANSMITTER

COPYRIGHT © 2004 BROADCAST ELECTRONICS, INC

FIGURE 1-3. FM-35T TRANSMITTER

FM-30T TRANSMITTER
 DESCRIPTION

\mathbf{P} / \mathbf{N}
909-0000-205

909-0000-385

909-0133-100

\mathbf{P} / \mathbf{N}

909-0035-205

909-0035-385

909-0133-100

FM-30T Transmitter complete with FX-50 FM Exciter, $208 / 240 \mathrm{~V}$ ac three-phase 60 Hz operation, high voltage power supply adjacent to $\mathrm{PA} /$ driver cabinet.

FM-30T Transmitter complete with FX-50 FM Exciter, $339 / 437 \mathrm{~V}$ ac three-phase 50 Hz operation, high voltage power supply adjacent to $\mathrm{PA} /$ driver cabinet.
Kit, FM-30T/FM-35T transmitter less exciter.

FM-35T TRANSMITTER

DESCRIPTION

FM-35T Transmitter complete with FX-50 FM Exciter, $208 / 240 \mathrm{~V}$ ac three-phase 60 Hz operation, high voltage power supply adjacent to $\mathrm{PA} /$ driver cabinet.

FM-35T Transmitter complete with FX-50 FM Exciter, $339 / 437 \mathrm{~V}$ ac three-phase 50 Hz operation, high voltage power supply adjacent to $\mathrm{PA} /$ driver cabinet.

Kit, FM-30T/FM-35T transmitter less exciter.

1-10. OPTIONAL EQUIPMENT.

1-11. The FM-25T, FM-30T and FM-35T transmitters are available with the following factoryinstalled options:

P/N
909-0134-100
909-0600

DESCRIPTION

Kit, Remote High Voltage Power Supply Cabinet.
Upgrade to 60 Watt FM Digital Exciter FXi 60

1-12. ACCESSORIES AND SPARE PARTS KITS.

1-13. The following accessory products and spare parts kits are available for use with the FM-30T and FM-35T transmitters:
\mathbf{P} / \mathbf{N}
909-0051-204
909-9000
979-0129-005

979-0139-005

979-0059-014

979-0148-015

DESCRIPTION

FC-30 FM SCA Generator.
LYNX FM digital stereo generator.
Recommended spare parts kit for the FM-30T and FX-50 Exciter. Includes selected meters, switches, relays, etc. Does not include semiconductors.

Recommended semiconductor kit for the FM-30T and FX-50 Exciter.

Recommended semiconductor kit for the FM-30T transmitter only. Does not include exciter spare semi-conductors.
Recommended spare parts kit for the FM-35T and FX-50 Exciter. Includes selected meters, switches, relays, etc. Does not include semi-conductors.

P/N
979-0149-005

979-0130-014
979-0060-001

979-0077-004 Recommended semiconductor kit for the FM-35T transmitter only. Does not include exciter spare semi-conductors.
979-0129-015 Recommended spare parts kit for the FM-30T transmitter only. Includes selected meters, switches, relays, etc. Does not include semi-conductors.
979-0046-014 Recommended spare parts kit for the FM-35T transmitter only. Includes selected meters, switches, relays, etc. Does not include semi-conductors.

979-0131-014 Recommended spare HV rectifier kit for FM-30T transmitter.

DESCRIPTION

Recommended semiconductor kit for the FM-35T and FX-50 Exciter. Recommended spare HV rectifier kit for FM-35T transmitter. Recommended spare parts kit, FXi 60.

1-14. EQUIPMENT SPECIFICATIONS.

1-15. Refer to TABLE 1-1, below, for the electrical specifications and TABLE 1-2, beginning on page 1-8 for the physical and environmental specifications of the Broadcast Electronics FM-30T and FM-35T FM Transmitters.

TABLE 1-1. FM-25T, FM-30T AND FM-35T ELECTRICAL CHARACTERISTICS (Sheet 1 of 3)

PARAMETER	SPECIFICATION
RF POWER OUTPUT:	
FM-25T	7.5 kW to 25 kW (as specified)
FM-30T	7.5 kW to 30 kW (as specified).
FM-35T	10 kW to 38.5 kW (as specified).
RF FREQUENCY RANGE	87.5 to 108 MHz (as ordered). Exciter programmable in 10 kHz increments. Optional PREDATOR exciter programmable in 100 kHz increments.
RF OUTPUT IMPEDANCE	50 Ohms Resistive (others on special request).
RF OUTPUT CONNECTOR	$31 / 8$ Inch (7.94 cm) EIA Flange.
TUBE COMPLEMENT:	
$\begin{aligned} & \text { FM- } 25 \mathrm{~T} / \mathrm{FM}-30 \mathrm{~T} \\ & \text { FM- } 35 \mathrm{~T} \end{aligned}$	$\begin{aligned} & \text { 8990/4CX20000A (1). } \\ & \text { 4CX20000C (1). } \end{aligned}$
MAXIMUM VSWR	$1.8: 1$ (will operate into higher VSWR with automatic power reduction).
AM SIGNAL-TO-NOISE RATIO:	
Asynchronous	55 dB below an equivalent reference carrier with 100% AM modulation at $400 \mathrm{~Hz}, 75$ microsecond deemphasis (no FM modulation present).

TABLE 1-1. FM-25T, FM-30T AND FM-35T ELECTRICAL CHARACTERISTICS
(Sheet 2 of 3)

PARAMETER	SPECIFICATION
AM SIGNAL-TO-NOISE RATIO	(Cont'd):
Synchronous, FM-25T	50 dB below an equivalent 25 kW reference carrier with $100 \% \mathrm{AM}$ modulation @ 1 kHz , no deemphasis ($F M$ modulation $\pm 75 \mathrm{kHz} @ 1 \mathrm{kHz}$).
Synchronous, FM-30T	50 dB below an equivalent 30 kW reference carrier with 100% AM modulation @ 1 kHz , no deemphasis (FM modulation $\pm 75 \mathrm{kHz} @ 1 \mathrm{kHz}$).
Synchronous, FM-35T	50 dB below an equivalent 35 kW reference carrier with 100% AM modulation @ 1 kHz , no deemphasis (FM modulation $\pm 75 \mathrm{kHz} @ 1 \mathrm{kHz}$).
FM SIGNAL-TO-NOISE RATIO:	
Mono/Composite	85 dB below $\pm 75 \mathrm{kHz}$ deviation @ 400 Hz measured in a 20 Hz to 30 kHz bandwidth with 75 microsecond deemphasis.
Stereo	80 dB or better below 100% modulation @ 400 Hz measured in a 20 Hz to 30 kHz bandwidth with 75 microsecond deemphasis.
RF HARMONIC SUPPRESSION	Meets all FCC/DOC Requirements and CCIR Recommendations.
POWER SUPPLY RECTIFIERS	Silicon.
DISTORTION	
Mono/Composite	
Harmonic	0.02% or less at 400 Hz .
SMPTE Intermodulation Distortion	0.02% or less, $60 \mathrm{~Hz} / 7 \mathrm{kHz}$, Ratio: 4:1 Monophonic, 1:1 Composite.
CCIF Intermodulation Distortion	0.02% or less, $15 \mathrm{kHz} / 14 \mathrm{kHz}, 1: 1$ Ratio.
Transient Intermodulation Distortion	0.02% or less, sine wave/square wave.
Stereo	
Harmonic	0.05% or less at 400 Hz .
SMPTE Intermodulation Distortion	0.05% or less, $60 \mathrm{~Hz} / 7 \mathrm{kHz}, 4: 1$ Ratio.
CCIF Intermodulation Distortion	0.05% or less, $15 \mathrm{kHz} / 14 \mathrm{kHz}, 1: 1$ Ratio.
Transient Intermodulation Distortion	0.05% or less, sine wave/square wave.

TABLE 1-1. FM-25T, FM-30T AND FM-35T ELECTRICAL CHARACTERISTICS (Sheet 3 of 3)

PARAMETER	SPECIFICATION
AC POWER REQUIREMENTS	196 V to 252 V ac $50 / 60 \mathrm{~Hz}$ Three-Phase ClosedDelta or Wye or 339 V to 437 V ac 50 Hz ThreePhase Wye 50 Hz .
AC POWER CONSUMPTION:	
FM-25T	39 kW typical at a 25 kW RF output level, 0.94 power factor (includes Exciter).
FM-30T	44 kW typical at a 30 kW RF output level, 0.94 power factor (includes Exciter).
FM-35T	51 kW typical at a 35 kW RF output level, 0.94 power factor (includes Exciter).
OVERALL EFFICIENCY	
$\begin{aligned} & \text { FM-25T } \\ & \text { FM-30T/35T } \end{aligned}$	64\% typical (AC line input to RF output). 68% typical (AC line input to RF output).
SOUND LEVEL	61 dB (A-weighted) or 48 dB (SIL) @ one meter front center (Ref. $0 \mathrm{~dB}=0.0002$ micro bar).
STEREO SEPARATION	50 dB or better, 30 Hz to 15 kHz .
DYNAMIC STEREO SEPARATION	50 dB or better, 30 Hz to 15 kHz (normal program content).
LINEAR CROSSTALK (Main to Sub/Sub to Main Due to Phase Matching)	45 dB minimum below 100% modulation, 30 Hz to 15 kHz .
NON-LINEAR CROSSTALK (Main to Sub/Sub to Main Due to Distortion Products)	70 dB minimum below 100% modulation.

TABLE 1-2. FM-25T, FM-30T AND FM-35T PHYSICAL AND ENVIRONMENTAL CHARACTERISTICS (Sheet 1 of 2)

PARAMETER	SPECIFICATION
PHYSICAL	
DIMENSIONS:	
PA/Driver Cabinet	Width: 56.6 Inches $(143.5 \mathrm{~cm})$.
	Height: 70 Inches 177.8 cm$).$
High Voltage Power Supply Cabinet	Depth: 31.5 Inches $(80.0 \mathrm{~cm})$.
	Width: 34.5 Inches $(87.6 \mathrm{~cm})$.
	Height: 70 Inches $(177.8 \mathrm{~cm})$.
	Depth: 31.5 Inches $(80.0 \mathrm{~cm})$.

TABLE 1-2. FM-25T, FM-30T AND FM-35T PHYSICAL AND ENVIRONMENTAL CHARACTERISTICS (Sheet 2 of 2)

PARAMETER	SPECIFICATION
WEIGHT:	
PA/Driver Cabinet	1500 Pounds (682 kg). Packed: 1750 Pounds (794 kg).
High Voltage Power Supply Cabinet FM-25T/FM-30T	1750 Pounds (794 kg). Packed: 1800 Pounds (816 kg).
FM-35T	1850 Pounds (839.2 kg). Packed: 1900 Pounds (861.8 kg).
CUBAGE:	
PA/Driver Cabinet	72 Cubic Feet ($2 \mathrm{~m}{ }^{3}$).
High Voltage Power Supply Cabinet	44 Cubic Feet ($1.25 \mathrm{~m}^{3}$).
LOW-PASS FILTER DIMENSIONS: Length Diameter	52.12 Inches (132.38 cm). 6.13 Inches (15.57 cm).
ENVIRONMENTAL	
AMBIENT TEMPERATURE RANGE MAXIMUM ALTITUDE	$+14^{\circ} \mathrm{F}$ to $+122^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right.$ to $\left.+50^{\circ} \mathrm{C}\right)$.
FM-25T/FM-30T 60 Hz Models	0 to 10,000 Feet above sea level (0 to 3048 Meters).
50 Hz Models	0 to 7,500 Feet above sea level (0 to 2286 Meters).
$\begin{aligned} & \text { FM- } 35 \mathrm{~T} \\ & 60 \mathrm{~Hz} \text { Models } \end{aligned}$	0 to 10,000 Feet above sea level (0 to 3048 Meters).
MAXIMUM HUMIDITY	95%, Non-Condensing.
HEAT DISSIPATION:	
FM-25T (25 kW Output) and FM-30T (30 kW Output): FM-35T (35 kW Output)	14 kW Maximum ($48,000 \mathrm{Btu} / \mathrm{h}$). 16 kW Maximum ($55,000 \mathrm{Btu} / \mathrm{h}$).
COOLING AIR REQUIREMENTS:	
$\begin{array}{ll} \text { PA Cabinet } & \text { FM-25T } \\ & \text { FM-30T/FM-35T } \end{array}$	900 Cubic Feet Per Minute ($25.49 \mathrm{~m}^{3} / \mathrm{min}$). 1200 Cubic Feet Per Minute ($33.98 \mathrm{~m}^{3} / \mathrm{min}$).
Driver Cabinet	500 Cubic Feet Per Minute ($14.15 \mathrm{~m}^{3} / \mathrm{min}$).

SECTION II INSTALLATION

2-1. INTRODUCTION.

2-2. This section contains information required for the installation and preliminary checkout of the Broadcast Electronics FM-25T, FM-30T and FM-35T Transmitters.

2-3. UNPACKING.

$2-4$. The equipment becomes the property of the customer when the equipment is delivered to the carrier. Carefully unpack the transmitter. Perform a visual inspection to determine that no apparent damage has been incurred during shipment. All shipping materials should be retained until it is determined that the unit has not been damaged. Claims for damaged equipment must be promptly filed with the carrier or the carrier may not accept the claim.

2-5. The contents of the shipment should be as indicated on the packing list. If the contents are incomplete, or if the unit is damaged electrically or mechanically, notify both the carrier and Broadcast Electronics, Inc.
2-6. INSTALLATION REQUIREMENTS.
2-7. ENVIRONMENTAL.
2-8. TABLE 1-2, page 1-8, provides environmental conditions which must be considered prior to transmitter installation.

2-9. COOLING AIR.

$2-10$. If outside air is to be used to cool the transmitter, the air inlet duct must be designed to allow adequate air flow. The air must be dry and well filtered. If intake louvers are used, operation of the louvers must be electrically interlocked with the transmitter operation.
2-11. If the heated transmitter air is to be ducted from the room, the duct system must not introduce any back-pressure on the equipment. Proper allowances for air flow will ensure that only a limited amount of heat is dissipated into the equipment interior. The duct system must allow for a minimum air flow of 1200 cubic feet of air per minute $\left(33.96 \mathrm{~m}^{3} / \mathrm{min}\right)$ from the PA cabinet and 500 cubic feet of air per minute ($14.15 \mathrm{~m}^{3} / \mathrm{min}$) from the driver cabinet. An exhaust fan may be used to boost the flow of heated air from the transmitter but must be capable of exhausting 1700 cubic feet of air per minute ($48.11 \mathrm{~m}^{3} / \mathrm{min}$) as a minimum rating.

2-12. As a minimum requirement, any ducting must have a cross-sectional area equal to the exhaust area of the PA cabinet plus the exhaust area of the driver cabinet (refer to FIGURE $2-1$, page $2-3$). Sharp bends in the duct system will introduce back pressure and are not permissible. A radius bend must be used if a right angle turn is required. An exhaust fan may be used to overcome duct losses or overcome wind pressures if the duct is vented to the outside.

2-13. PRIMARY POWER.

2-14. The FM-25T, FM-30T and FM-35T transmitters are designed for operation from a closeddelta or wye connected three-phase power source. Operation from an unsatisfactory power source will void the warranty on the transmitter as any resultant damage is beyond the control of the manufacturer. Before attempting installation of the transmitter, assure that the proper power source is installed. Acceptable power input configurations are shown in FIGURE 2-2, page 2-9.

2-15. An open-delta, V to V, T to T, T to L, or Scott connected power source will provide unsatisfactory transmitter performance as transients and unstable power can damage components of the transmitter and provide degraded specifications. Any of these systems will develop a considerable imbalance between phases in voltage, phase angle, or both voltage and phase angle. These problems can result in premature failure of power supply and RF circuit components.
2-16. It is important that the local electric utility be consulted to ensure that the correct service is provided before connection of the transmitter to a primary power source. The proper power source can be readily identified by the use of three transformers with one winding each or one transformer with three windings instead of the use of two transformers as required for the unacceptable configurations.

2-17. INSTALLATION.

2-18. Each transmitter is wired, operated, tested, and inspected at the factory prior to shipment and is ready for installation when received. Prior to installation, this publication should be studied to obtain an understanding of the operation circuitry, nomenclature, and installation requirements. Installation is accomplished as follows: 1) placement, 2) component installation, 3) remote control connections, 4) wiring, and 5) initial checkout.
2-19. EQUIPMENT PLACEMENT.

4 WARNING

ENSURE NO PRIMARY POWER IS CONNECTED TO THE TRANSMITTER BEFORE PROCEEDING.

2-20. The FM-25T, FM-30T and FM-35T transmitters are designed for two types of installations: 1) adjacent high voltage power supply cabinet installation or 2) remote high voltage power supply cabinet installation. If the cabinets are positioned apart, access holes in the top and bottom allow either overhead or under floor ducting of interconnecting wiring (see FIGURE 2-1, page 2-3).
$2-21$. Regardless of the type of installation, the floor must be capable of supporting the total transmitter weight. Also, the floor support should be more than marginal to maintain the proper alignment of the cabinets and reduce vibration.
2-22. After determining the position of the cabinets, place the PA and driver cabinets in the desired location as a single unit on a smooth and level surface. PA/Driver cabinets can be moved using a fork-lift if one is available (refer to FIGURE 2-3, page 2-10). Lift the PA/ Driver cabinets and remove the shipping skid.
2-23. Remove the rear access door and the left side panel from the high voltage power supply cabinet. The rear access door may simply be lifted off the hinges. The left side panel is secured by two No. 2 Phillips head screws in the left side rear mounting rail. After the two screws are removed, the side panel may be lifted up and off the rack.
2-24. Move the cabinet to the desired location using a fork-lift if one is available (refer to FIGURE 2-3, page 2-10) and remove the shipping skid. After the skid is removed from the cabinet, slide the cabinet to the final location.
$2-25$. If the power supply is positioned adjacent to the PA cabinet, adjust and secure the cabinets as follows:
A. Bolt the power supply cabinet to the PA cabinet through the side rails with the connecting hardware provided (see FIGURE 2-1, page 2-3). A 7/16 inch open-end box-end wrench and a ratchet with a $7 / 16$ inch socket and short extension is required.
B. Check the bolts securing the PA cabinet to the driver cabinet to ensure all three cabinets are securely bolted together.

pa cabinet side view
detall "as.
pA~POWER SUPPLY cabinet AsSehbly nties:
-

2. Revove the pryer siply side-panel.

NDTES:

AIR INLET
Dilatininn pa cabinet rear-Panel
 $x 1$ INCH NDMINAL.
BEI P/N 407-0062.
2. LITATIDN: DRIVER CABINET REAR-PANEL

4. RF DUTPUT ASSEMLLY:

LOW-PASS FITTER (BEI PAN 333-0022)
DTMENSIDNS:

MIINTING: MECHANICAL SUPPDRT REDUIRED EXTERNAL WEIGHT: \quad ES PDUNDS (29.48 kg)
TINTING LINE HEIGHT (DETERYINED BY TRANSMITTER

Б. WEICH

7. LODLING AIR REDUIREMENTS:

B. AC INPUT REEUIRMENTS:
 ROO AMPERES PER PHASE MAXMIMM.
CUSED DIICONNECT RECOMMENED.
9. heat dissipation:
10. PDWER CDNSUMPTITN:

FM25: 39.0 kW FIR A 25 kW DUTPUT, 0.94 PDWER FACTIR

vites:

2. AIR INLET

1. LITATIINN: pA CABinet Rear-Panel

2. LILATITN: BEI PRAN 407-OOE2.

3. RF RITPLT ASSEVBIY

CINNELTJON: $\begin{aligned} & 3.125 \text { INCH EIA } 50 \text { DHM MALE FIELD } \\ & \text { FLANE. }\end{aligned}$
LOW-PASS FILTER (BEI P/N 339-0022),
DTMENIINS:

MIINTING: MECHANICAL SUPPPRTT REDUIRED EXTERNAL WEIGHT: B5 PULNDS (29.48 kg)
TUNING LINE HEIGHT (D ETERMINED BY TRANSMITTER
FREDUNCT $\begin{array}{lll}\text { MAXINLM: } & 15.5 \text { INCHES }(39.37 \mathrm{~cm}) \text { e } 10 \mathrm{MHz} \\ \text { MINIMMM: } & 4.5 \mathrm{INCHES}(11.3 \mathrm{~cm}) \text { E } \mathrm{MB}\end{array}$
5. CUEAGE:

6. MEIGHT:

7. LODLING AIR REDUIREMENTS:

B. AC INPUT REDUIRMENTS:

 300 MMP REE PER PHAE MAXMMM.
FLSED DISCDNNETT RECOMMENDED.
g. heat dissipation:

10. PDWER CONSIMPTITN:

AM30T: 44.0 kW FDR a 30 kN वUTPUT, 0.94 PDWER FACTII FM35T: 51.0 kW FIR A 35 kW पUTPUT, 0.94 POWER FACTD

COPYRIGHT © 2004 BRoadcast mlectronics, inc

597-0096-403

FIGURE 2-1. FM-30T/FM-35T TRANSMITTER INSTALLATION (Sheet 2 of 3) (2-5/2-6)

NDTE:

1. for top wire access hdles, see sheet 1

COPYRIGHT © 2004 BROADCAST ELECTRONICS, INC
597-0099-11
FIGURE 2-2. ACCEPTABLE AC POWER INPUT CONFIGURATIONS

FIGURE 2-3. CABINET MOVING PROVISION

$2-26$. COMPONENT INSTALLATION.

WARNING
ENSURE NO PRIMARY POWER IS CONNECTED TO THE TRANSMITTER BEFORE PROCEEDING.
WARNING
$2-27$. To facilitate component installation and wiring, the rear door of the driver cabinet, the rear door, front door, and the lower front access panel of the PA cabinet, and the rear door and left side panel of the power supply cabinet should be removed and left off until installation is complete.
$2-28$. Interconnecting wires and cables are tied in for shipment. Remove all tape, wire ties, string, and packing material used for shipment.

2-29. Cables, connectors, and miscellaneous components to be installed are shipped in separate containers. The following text provides information concerning the installation of these items. Ensure the transmitter adjustments are not moved from the factory preset positions.

2-30. HIGH VOLTAGE POWER SUPPLY CABINET. Unpack components located in the high voltage power supply cabinet as follows.
2-31. Unwrap the grounding stick and place the stick on the interlocked hanger. Ensure the wire tie securing the grounding stick interlocked hanger switch is removed. Store the grounding stick cable on top of the plate transformer.
2-32. Unwrap the interlock connector (if the cabinets are positioned together) or the interlock cable (if the cabinets are positioned apart).
2-33. Unwrap the $\mathrm{PA} /$ driver cabinet ac power cable harness which is coiled inside the high voltage cabinet.
$2-34$. Connect the high voltage power supply half-voltage plug to the $9600 \mathrm{~V} / 11,500 \mathrm{~V}$ receptacle.

WARNING
 ENSURE NO PRIMARY POWER IS CONNECTED TO THE TRANSMITTER BEFORE PROCEEDING. WARNING

2-35. DRIVER CABINET. Unpack, check, and install components located in the driver cabinet as follows.

2-36. Controller. Two coaxial cables shipped inside the PA/Driver cabinet connect to the controller as follows:

- FROM -

OUTPUT TRANSMISSION LINE DIRECTIONAL COUPLER

VSWR port
FWD port

- TO -

CONTROLLER

J10 RFL PWR RF SAMPLE J9 FWD PWR RF SAMPLE

2-37. FX-50 Exciter. For transmitters equipped with an FX-50 exciter, perform the following procedure. For transmitters equipped with a FXi 60 digital exciter, no unpacking procedures are required.
$2-38$. Remove the slide retainers from the exciter, loosen the exciter front-panel turn-lock fasteners, and pull the exciter forward.

2-39. Loosen the eight turn-lock fasteners on the top of the exciter and remove the top cover.
$2-40$. Remove any packing material from the inside of the exciter.
2-41. Ensure the POS-MUTE-NEG switch on the power supply/control circuit board is operated to POS.

2-42. Ensure the AUTO-PWR-MAN switch on the power supply/control assembly is operated to AUTO and the NORM-EXT switch is operated to NORM.

2-43. Refer to the final test data sheets shipped with the exciter and ensure the AFC/PLL assembly SYNTHESIZER FREQUENCY SELECTION switches are correctly positioned.

2-44. Remove the two shipping screws securing the modulated oscillator assembly, and allow the unit to float on its mountings.
2-45. Replace the top cover on the exciter and secure the eight turn-lock fasteners on the top of the cover.

2-46. IPA Unit. The RF power module is installed in RF power module location 2. To install the RF module, proceed as follows:

CAUTION
 CAUTION

THE TRANSMITTER MAY BE DAMAGED IF THE RF POWER MODULE IS NOT SECURELY SEATED INTO THE MOTHERBOARD CONNECTORS.

CAUTION
THE RF POWER MODULE IS EQUIPPED WITH REAR-PANEL MOUNTED CONNECTORS. TO PREVENT DAMAGE TO THE
CAUTION CONNECTORS, INSERT/REMOVE THE MODULE CAREFULLY AND DO NOT PLACE THE MODULE ON THE REARPANEL.

1. Locate the RF power module.
2. Refer to FIGURE 2-4 and align the RF power module with the guides in the RF power module 2 location.
3. Insert and firmly press the RF module into the motherboard connectors.
4. Secure the RF power module mounting hardware. The mounting hardware must be secure to ensure the RF power is properly seated in the connectors.

FIGURE 2-4. IPA UNIT RF POWER MODULE INSTALLATION

2-47. Optional Equipment. Refer to the stereo generator and SCA generator manuals and complete any applicable checks or programming included in INSTALLATION.

解
 WARNING
 WARNING

ENSURE NO PRIMARY POWER IS CONNECTED TO THE TRANSMITTER BEFORE PROCEEDING.

2-48. PA CABINET. Unpack, check, and install components located in PA cabinet as follows.
2-49. RF Enclosure. Open the PA cavity access door.
2-50. Disconnect the plate-line $\mathrm{B}+$ banana plug along the right side of the plate-line.
$2-51$. Remove all tape and packing shims from the plate-line at the cavity shelf to free the plateline. Align the plate-line pins with the notches in the cavity shelf and raise the plate-line to allow the pins to travel up through the cavity shelf notches. Once the plate-line pins are above the cavity shelf, rotate the plate-line to lock the plate-line in the up position.
$2-52$. Carefully remove all packing material from over the tube socket.
2-53. Carefully install the PA tube with a steady downward pressure. Do not rotate or rock the tube during installation to prevent damage to the tube socket.
$2-54$. After the PA tube is fully seated, align the plate-line pins with the cavity shelf notches and lower the plate-line. Align the high-voltage plate-line connection with the cavity shelf notch. Once the high-voltage connection is aligned, lower the plate-line over the tube until the plate-line shims engage the cavity shelf.

2-55. Reconnect the plate RF choke banana plug to the plate-line. Ensure all connections are secure.
$2-56$. Secure the plate-line to the tube with the strap clamp. The plate-line must not move from the PA tube when upward pressure is applied. A flat-blade screwdriver with a $1 / 4$ inch $(0.64 \mathrm{~cm})$ tip is required.
$2-57$. Close and secure the PA cavity access door.
2-58. Ensure the second harmonic suppressor on the rear of the PA cavity is adjusted to the factory preset line scribed on the adjustment rod. If adjustment is required, loosen the lock screws and adjust the suppressor as required. Do not rotate the suppressor during adjustment. A $1 / 16$ inch (1.59 mm) hex wrench is required for adjustment.

NOTE
ENSURE THE TRANSMITTER COARSE TUNING IS ADJUSTED IN THE THE FOLLOWING STEP.

2-59. Adjust the transmitter coarse tuning as follows:
A. On the top of the PA cabinet, Loosen the PA tuning line clamp.
B. Raise the PA tuning line until the factory scribed line is aligned with the top of the cavity clamping flange. Ensure the tuning line is perpendicular to the top surface of the cabinet. Secure the tuning line to the flange with the strap clamp.

TO PREVENT INCREASED HARMONIC OUTPUT LEVELS AND EFFICIENCY DEGRADATION, ASSEMBLE THE TRANSMITTER OUTPUT LINE AS DESCRIBED IN THE FOLLOWING TEXT WITH THE COMPONENTS SUPPLIED BY THE FACTORY. DO NOT INSTALL ADDITIONAL TRANSMISSION LINE SECTIONS BETWEEN CAUTION THE CAVITY OUTPUT PORT AND THE LOW-PASS FILTER.

2-60. RF Output Line Assembly. Refer to FIGURE 2-5, page 2-15, and the following information to assemble the transmitter RF output transmission line. Assemble the RF output line as described with the components supplied by the factory. Do not install additional transmission line sections between the cavity output port and the low-pass filter. Incorrect assembly may result in increased harmonic output levels and efficiency degradation.

2-61. Locate the RF transmission line inner and outer conductors, elbow assembly, and low-pass filter assembly.

2-62. Loosen the hardware on the PA output line clamp. A $3 / 8$ inch box-end wrench is required.
2-63. Insert the transmission line inner conductor from the top, down onto the bullet connector in the lower transmission line elbow until the inner conductor is fully seated.

2-64. Insert the transmission line outer conductor from the top, down into the transmission line coupler until the outer conductor is fully seated. Secure the coupler strap clamps. A flattip screwdriver with a four-inch $(10.16 \mathrm{~cm})$ blade and a $1 / 4 \mathrm{inch}(0.64 \mathrm{~cm})$ tip is required.

2-65. Secure the PA output line clamp. A $3 / 8$ inch box-end wrench is required.
2-66. On a work surface, assemble the elbow with the monitor jack, the elbow inner conductor, a bullet conductor and insulator, and one unflanged transmission line coupling. Position the monitor receptacle either horizontally or vertically by reversing the elbow as required.

2-67. Ensure all parts of an assembly are fully seated, then secure the assembly together with a strap clamp using a flat-tip screwdriver with a four-inch (10.16 cm) blade and a $1 / 4$ inch $(0.64 \mathrm{~cm})$ tip.

2-68. Mount the entire elbow assembly on top of the transmission line. When the assembly is fully seated, position the elbow as desired and secure the elbow strap clamp using a flattip screwdriver with a four-inch $(10.16 \mathrm{~cm})$ blade and a $1 / 4$ inch $(0.64 \mathrm{~cm})$ tip.

2-69. Locate the $31 / 8$ flanged coupling and bolt the coupling to the low-pass filter input as shown. The flange is secured with six bolts, six lockwashers, and six nuts.

2-70. Insert a bullet connector and insulator into the $31 / 8$ inch (7.94 cm) flange.

CAUTION
the transmitter will not support the weight of THE LOW-P ASS FILTER ASSEMBLY. MECHANICAL SUPPORT EXTERNAL TO THE TRANSMITTER IS REQUIRED.

2-71. Using mechanical support external to the transmitter, insert the low-pass filter assembly directly into the transmission line elbow as shown. Secure the coupling to the elbow with the strap clamp.

FIGURE 2-5. RF OUTPUT LINE ASSEMBLY

2-72. Connect the controller and monitor coaxial cables to the assembly as follows:
A. Connect controller forward power cable 304 to the \% (FWD) port on the directional coupler.
B. Connect controller VSWR cable 305 to the \# port (RFL) on the directional coupler.
C. Connect the station monitor cable to the monitor port on the output line assembly.

2-73. After assembling the RF output transmission line, bolt the antenna transmission line to the low-pass filter. The flange is secured with six bolts, six lockwashers, and six nuts.
2-74. PA Cabinet Grounding Stick. Unpack the PA cabinet grounding stick and place the stick on the interlocked hanger. Ensure the wire tie securing the grounding stick hanger interlock switch is removed.
2-75. REMOTE CONTROL.
2-76. The FM-30T/FM-35T transmitters are designed for complete remote control operations (refer to FIGURE 2-6, page 2-17). The transmitter will interface with almost any remote control unit such as the Broadcast Electronics VMC-16 Voice Remote Control System. The following text presents a description of the FM-25T/FM-30T/FM-35T remote control functions and indications. The remote control connections are located on the transmitter remote interface panel (refer to FIGURE 2-6, page 2-17).
2-77. The transmitter controller allows the selection of positive or negative control logic. Positive/negative control is determined by header J6 on the controller main circuit board assembly. Positive control requires the use of a momentary contact to a +5 volt to +15 volt dc signal to activate the function. Negative control requires the use of a momentary contact to ground to activate the function. The transmitter controller is factory programmed for positive remote control operations.
2-78. The remote meter outputs can be configured for: 1) $+2 /+4$ volt dc full-scale indications and 2) a log or linear format. $+2 /+4$ volt dc full-scale programming is determined by headers J 10 through J 12 on the controller main circuit board. The log/linear control is determined by header J8 pins 15-16 on the controller main circuit board. Refer to FIGURE 2-6, page $2-17$, and the following text to connect remote control equipment to the transmitter.
2-79. Remote APC On Control. The APC (automatic-power-control) on function is located at TB1-1. The function can be activated using positive or negative control. Positive control requires the use of a momentary contact to a +5 volt to +15 volt dc signal to enable APC operation. Negative control requires the use of a momentary contact to ground to enable APC operation.
2-80. Remote Filament On Control. The filament on function is located at TB1-2. The function can be activated using positive or negative control. Positive control requires the use of a momentary contact to a +5 volt to +15 volt de signal to enable the filaments. Negative control requires the use of a momentary contact to ground to enable the filaments.
$2-81$. Remote Filament Off Control. The filament off function is located at TB1-3. The function: 1) provides one-button-off control by disabling the high voltage and the filaments and 2) can be activated using positive or negative control. Positive control requires the use of a momentary contact to a +5 volt to +15 volt dc signal to disable the: 1) filaments and 2) high voltage if not previously disabled. Negative control requires the use of a momentary contact to ground to disable the: 1) filaments and 2) high voltage if not previously disabled.
2-82. Remote High Voltage On Control. The high voltage on function is located at TB1-4. The function: 1) provides one-button-on control by enabling the high voltage and the filaments and 2) can be activated using positive or negative control. Positive control requires the use of a momentary contact to a +5 volt to +15 volt dc signal to enable the: 1) high voltage and 2) filaments if not previously enabled. Negative control requires the use of a momentary contact to ground to enable the: 1) high voltage and 2) filaments if not previously enabled.

(1) $A P C D N$ CIMMAND	* AUTIMATIC PGWER CINTRDL aN CONTRGL PUSITIVE CUNTRDL - MIMENTARY CUNTACT TI +5 TI +15VDC REDUIRED TI DPERATE APC DN .	$=\frac{1}{0} 0$
	negative contral - mamentary contact to GRDUND REQUIRED TI DPERATE APC CN .	
(2) FILAMENT QN CIMMAMND	* FILAMENT IN CINTRDL PISITIVE CONTRLL - MIMENTARY CONTACT TD +5 TQ +15VDC REDUIRED TO ENABLE THE FILAMENTS	$=\frac{1}{0}-$
	$\begin{aligned} & \text { NEGATIVE CINTRIL } \text { - MIMENTARY CINTACT TI } \\ & \text { GREUND REDUIRED TO } \\ & \text { ENABLE THE FILAMENTS. } \end{aligned}$	
(3) filament aff		$-\bigcirc$
(4) HIGH Valtage an cImmand	* high valtage an cantrol POSITIVE CUNTRLL - MIMENTARY CUNTACT TI +5 TO +15VDC REDUIRED to enable the high valtage NEGATIVE CINTRDL MIMENTARY CUNTACT TD GROUND REGUIRED TZ enable the high valtage.	$\longrightarrow-\frac{1}{0}$
(5) HIGH VILTAGE IFF CIMMAND	* high valtage gff cantral pISItIVE CZntral - mamentary cantact ta +5 TD +15VIC REDUIRED to disable the high valtage	$=\frac{1}{0}-$
	negative contral - mamentary cantact ta GRDUND REDUIRED TD DISABLE THE HIGH VZLTAGE.	
(6) RAISE PA PWR CIMMAND	* transmitter raise pawer cantral POSITIVE CONTRLL - MDMENTARY CZNTACT TI +5 TD +15VIC REDUIRED to Raise transmitter pawer negative cantral - mamentary cantact ta GRDUND REDUIRED TD RAISE TRANSMITTER PDWER.	$=10-$
(7) LIWER PA PWR CIMMAND	* transmitter lawer pawer cantral pasitive cantral - mamentary cantact ta +5 TO +15vIC REDUIRED to LIWER TRANSMITTER PIWER neGative cantral mamentary cantact ta graund reguirea ta LIWER TRANSMITTER PIWER.	$=\frac{1}{0}-$
(a) PRESET PA PWR CIMMAND	* PRESET pawer an contral pasitive cantral - sustained cantact ta +5 TO +15VIC REDUIRED to Enable PRESET PDWER. negative control - sustained cantact ta enable preset pawer.	$=\frac{1}{0}-$
(9) IVERLDAD RESET CIMMAND	* aVERLIAD RESEt cantral pasitive contral - mamentary cantact ta +5 TO +ISVIC REDUIRED NEGATIVE CINTRLL to ReSET THE IVERLDAD CIRCUIT. mamentary cantact ta GROUND REQUIRED TI reset the averldai circuit.	$=\frac{1}{0}$
(10) na connection		
(11) na cannection		
(12) n d cannection		
(13) na cannection		
(14) na connection	apC in indication. Luw (o vic) when active	ave (t) ${ }^{\text {/ }}$ + ${ }^{\text {+ }}$
(16) filament an status	filament an indication. LIW (0 VIC) WHEN ACTIVE	時
(17) Remate disable status	remate oisable indication. LOW (V VIC) WHEN ACTIVE	av
(18) high valtage on status	high valtage an indicatian. LOW (a VIC) WHEN ACTIVE.	$\mathrm{av}_{4}^{\frac{1}{4}}$
(19) PLATE IVERLIAD status	PLATE IVERLIAD INDICATİN. LIW (0 vac) when active.	
(20) SCREEN IVERLDAD status	SCREEN DVERLDAD INDICATIUN. LOW (0 VIC) WHEN ACTIVE.	$\text { 唯 } 4$
(21) LiRID ZVERLDAD	GRID DVERLDaD indication. LIW (C VIC) WHEN ACTIVE.	$\mathrm{ov}_{4}+\frac{+v}{4}$
(22) vSWR dVERldad STATUS	vswr dverldad inaication. LIW (0 VIC) WHEN ACTIVE.	$\text { ovs (1. } / 4$
(23) averlqad status	gVErlaad circuit indicatian. LOW (O VIC) WHEN ACTIVE.	$\text { avs } 4.4{ }^{+v}$
(24) preset status	preset pawer indication. LIW (O VIC) WHEN ACTIVE	$\text { ovs (4. } \frac{+v}{\tau}$
(25) ND cInnection		

FIGURE 2-6. REMOTE CONTROL INTERFACING (Sheet 1 of 2)

FIGURE 2-6. REMOTE INTERFACING (Sheet 2 of 2)

2-83. Remote High Voltage Off Control. The high voltage off function is located at TB1-5. The function can be activated using positive or negative control. Positive control requires the use of a momentary contact to a +5 volt to +15 volt de signal to disable the high voltage. Negative control requires the use of a momentary contact to ground to disable the high voltage.
2-84. Remote PA Power Level Raise Control. The transmitter PA power level raise control is located at TB1-6. The function can be activated using positive or negative control. Positive control requires the use of a momentary contact to a +5 volt to +15 volt dc signal to raise the transmitter power level. Negative control requires the use of a momentary contact to ground to raise the transmitter power level.
2-85. Remote Power Level Lower Control. The transmitter PA power level lower control is located at TB1-7. The function can be activated using positive or negative control. Positive control requires the use of a momentary contact to a +5 volt to +15 volt dc signal to lower the transmitter power level. Negative control requires the use of a momentary contact to ground to lower the transmitter power level.
2-86. Remote Preset Power On Control. The preset power on function is located at TB1-8. The function can be activated using positive or negative control. Positive control requires the use of a sustained contact to a +5 volt to +15 volt dc signal to enable preset power operation. Negative control requires the use of a sustained contact to ground to enable preset power operation. When a sustained remote control signal is applied, preset power will be enabled if the APC switch/indicator is illuminated and the REMOTE DISABLE switch/indicator is extinguished. The transmitter will automatically return to full power when the sustained remote control signal is removed.
2-87. Remote Overload Reset Control. The overload reset control is designed to reset the transmitter overload circuitry. The reset control is located at TB1-9. The function can be activated using positive or negative control. Positive control requires the use of a momentary contact to $\mathrm{a}+5$ volt to +15 volt dc signal to reset the transmitter overload circuitry. Negative control requires the use of a momentary contact to ground to reset the transmitter overload circuitry.
2-88. No Connection. No connection at the following locations:

1) TB1-10 through TB1-14.
2) TB1-25.
3) TB2-9.
4) TB2-12.

2-89. APC On Indicator. The APC on indicator provides a signal to indicate when APC operation is enabled. The APC on indicator is located at TB1-15. The indicator will go LOW (0 volts dc) to indicate when APC operation is enabled.

2-90. Filament On Indicator. The filament on indicator provides a signal to indicate when the filaments are enabled. The filament on indicator is located at TB1-16. The indicator will go LOW (0 volts dc) to indicate when the filaments are enabled.
$2-91$. Remote Disable Indicator. The remote disable indicator provides a signal to indicate when the remote control inputs are disabled. The remote disable indicator is located at TB1-17. The indicator will go LOW (0 volts dc) to indicate when the remote control inputs are disabled.
$2-92$. Remote High Voltage On Indicator. The remote high voltage on indicator provides a signal to indicate when the high voltage is enabled. The remote high voltage on indicator is located at TB1-18. The indicator will go LOW (0 volts dc) to indicate when the high voltage is enabled.
2-93. Remote Plate Overload Indicator. The remote plate overload indicator provides a signal to indicate when a plate overload has occurred. The remote plate overload indicator is located at TB1-19. The indicator will go LOW (0 volts dc) to indicate when a plate overload has occurred.

2-94. Remote Screen Overload Indicator. The remote screen overload indicator provides a signal to indicate when a screen overload has occurred. The remote screen overload indicator is located at TB1-20. The indicator will go LOW (0 volts dc) to indicate when a screen overload has occurred.

2-95. Remote Grid Overload Indicator. The remote grid overload indicator provides a signal to indicate when a grid overload has occurred. The remote grid overload indicator is located at TB1-21. The indicator will go LOW (0 volts dc) to indicate when a grid overload has occurred.

2-96. Remote VSWR Overload Indicator. The remote VSWR overload indicator provides a signal to indicate when a VSWR overload has occurred. The remote VSWR overload indicator is located at TB1-22. The indicator will go LOW (0 volts dc) to indicate when a VSWR overload has occurred.

2-97. Remote Overload Indicator. The remote overload indicator provides a signal to indicate when a plate, screen, grid, or VSWR overload has occurred. The remote overload indicator is located at TB1-23. The indicator will go LOW (0 volts dc) to indicate when an overload has occurred.

2-98. Remote Preset Power Indicator. The preset power indicator provides a signal to indicate when preset power operation is enabled. The preset power indicator is located at TB1-24. The indicator will go LOW (0 volts dc) to indicate when preset power operation is enabled.

2-99. Remote Failsafe Indicator. The failsafe indicator provides a signal to indicate when the failsafe interlock is closed. The failsafe indicator is located at TB1-26. The indicator will go LOW (0 volts dc) to indicate when the failsafe interlock is closed.

2-100. Remote Interlock Indicator. The interlock indicator provides a signal to indicate when the internal interlocks are closed. The interlock indicator is located at TB1-27. The indicator will go LOW (0 volts dc) to indicate when the interlocks are closed.

2-101. Remote Blower Indicator. The blower indicator provides a signal to indicate when the transmitter blower is operational. The blower indicator is located at TB1-28. The indicator will go LOW (0 volts dc) to indicate when the blower is operational.

2-102. Remote Filament Indicator. The filament indicator provides a signal to indicate when the filament contactor is energized. The filament indicator is located at TB1-29. The indicator will go LOW (0 volts dc) to indicate when the filament contactor is energized.

2-103. Remote High Voltage Indicator. The high voltage indicator provides a signal to indicate when the high voltage contactor is energized. The high voltage indicator is located at TB1-30. The indicator will go LOW (0 volts dc) to indicate when the high voltage contactor is energized.

2-104. Remote Forward Power Meter Indications. Remote forward power meter indications are located at TB2-1. The forward power meter output can be configured for a +2 or +4 volt dc full-scale meter indication. The forward power full-scale indication is 30,000 watts for an FM-25T/FM-30T or 38,500 watts for an FM-35T. In addition, the forward power sample can be provided in a log or linear format. The transmitter is shipped with the sample programmed for a linear format. The meter ground is recommended for remote metering connections (TB2-6 through TB2-8).

2-105. Remote Reflected Power Meter Indications. Remote reflected power meter indications are located at TB2-2. The reflected power meter output can be configured for a +2 or +4 volt dc full-scale meter indication. The reflected power full-scale indication is 9260 watts for an FM-25T/FM-30T or 10,800 watts for an FM-35T. In addition, the reflected power sample can be provided in a log or linear format. The transmitter is shipped with the sample programmed for a linear format. The meter ground is recommended for remote metering connections (TB2-6 through TB2-8).

2－106．Remote Plate Voltage Meter Indications．Remote plate voltage meter indications are lo－ cated at TB2－4．The plate voltage meter output can be configured for a +2 or +4 volt dc full－scale meter indication．The plate voltage full－scale indication is 10,000 volts for FM－25T／FM－30T or 12，000 volts for an FM－35T．In addition，the plate voltage sample can be provided in a log or linear format．The transmitter is shipped with the sample pro－ grammed for a linear format．The meter ground is recommended for remote metering con－ nections（TB2－6 through TB2－8）．
2－107．Remote Plate Current Meter Indications．Remote plate current meter indications are lo－ cated at TB2－5．The plate current meter output can be configured for a +2 or +4 volt dc full－scale meter indication．The plate current full－scale indication is 5 amps for an FM－25T，or FM－30T or FM－35T．In addition，the plate current sample can be provided in a log or linear format．The transmitter is shipped with the sample programmed for a lin－ ear format．The meter ground is recommended for remote metering connections（TB2－6 through TB2－8）．
2－108．Remote IPA Forward Power Meter Indications．Remote IPA forward power meter indica－ tions are located at TB2－3．The meter output can be configured for a +2 or +4 volt dc full－ scale meter indication．The IPA forward power full－scale indication is 500 watts．In addi－ tion，the IPA forward power sample can be provided in a log or linear format．The trans－ mitter is shipped with the sample programmed for a linear format．The meter ground is recommended for remote metering connections（TB2－6 through TB2－8）．

2－109．Chassis Ground．Chassis ground is designed to be used for remote control connections． Chassis ground is located at TB2－13 and TB2－14．
$2-110$ ．＋15V DC Supply．A +15 volt dc supply is provided for the remote control switches and in－ dicators．The +15 volt dc supply is located at TB2－15 and TB2－16．
2－111．WIRING．
WARNING
ENSURE NO PRIMARY POWER IS CONNECTED TO THE TRANSMITTER BEFORE PROCEEDING．
WARNING

2－112．TRANSFORMER TAPS．Ensure the transmitter is wired for the input voltage and line frequency to be used．The PA screen transformer，the PA plate transformer，the PA bias transformer，and the filament voltage regulator must be checked and changed if required （see FIGURE 2－7，page 2－22）．

2－113．INPUT VOLTAGE CHECK．The FX－50 exciter，optional stereo generator，and optional SCA generator should be checked by performing the following procedure．For FXi 60 digi－ tal exciters，no input voltage check is required．

A．The primary ac line voltage with which the transmitter will be used（ 220 V or $230 / 240 \mathrm{~V}$ ）must be visible on the ac line voltage selector circuit board located adjacent to the ac input connector on each unit．

B．If an ac line voltage selector must be changed，remove the ac line voltage selector circuit board with a small pair of needle－nose pliers．Reinsert the circuit board so that the correct ac line voltage is visible when the circuit board is reinserted into the receptacle．

WARNING ENSURE NO PRIMARY POWER IS CONNECTED TO THE TRANSMITTER BEFORE PROCEEDING．
WARNING
2－114．CABINET INTERCONNECTIONS．Refer to the following cabinet interconnection proce－ dures for the type of transmitter installation used．

2-115. Cabinet Interconnections For Adjacent Power Supply Cabinet Installation. For an adjacent power supply cabinet installation, refer to FIGURE 2-8, page 2-24 and perform the following cabinet interconnections.

TO PREVENT DAMAGE TO THE WIRING HARNESS ASSEMBLY, ROUTE WIRES 383-395 TO TB203 IN THE CABLE DUCT.

A. Connect ac power wires 383 through 395 to terminal board TB203 in the PA cabinet. Route wires 383 through 395 to TB203 in the cable duct to prevent damage to the wires from the blower assembly.
B. Attach interlock connector P301 to J301.
C. Connect high voltage wire 100 to the power supply cabinet high voltage shorting switch assembly as shown.

597-0096-11

FIGURE 2-7. POWER TRANSFORMER WIRING (Sheet 1 of 2)

FIGURE 2-7. POWER TRANSFORMER WIRING (Sheet 2 of 2)

FIGURE 2-8. CABINET INTERCONNECTIONS, ADJACENT POWER SUPPLY CABINET INSTALLATION
D. Connect ground return wire 453 to the bottom terminal of resistor R307 as shown.
E. Attach the ground connections in the cabinets as follows:

1. Connect the appropriate size braided copper wire from earth ground to the power supply cabinet ground terminal.
2. Bolt the copper straps in each adjoining cabinet together securely.

2-116. Cabinet Interconnections For Remote Power Supply Installation. For a remote power supply installation, refer to FIGURE 2-9, page 2-26 and perform the following cabinet interconnections.

44 WARNING

ROUTE CABINET INTERCONNECTING HIGH VOLTAGE AND AC POWER CABLES IN 1 INCH (2.54 cm) METALLIC CONDUIT TO PREVENT EXPOSURE TO HAZARDOUS VOLTAGES.
A. Use the PA cabinet and power supply cabinet overhead wiring access holes and route the high voltage and ac power cables from the power supply cabinet to the PA cabinet through 1 inch (2.54 cm) metallic conduit. Route all dc control cables in access holes separate from the ac and high voltage cables.

WARNING CONNECT THE CONDUIT TO THE GROUND STRAP IN EACH CABINET.
WARNING
B. For overhead wiring installations, connect the conduit to the ground strap in each cabinet.

TO PREVENT DAMAGE TO THE WIRING HARNESS ASSEMBLY, ROUTE WIRES 383-395 TO TB203 IN THE CABLE DUCT.
C. Connect ac power wires 383 through 395 to terminal board TB203 in the PA cabinet. Route wires 383 through 395 to TB203 in the cable duct to prevent damage to the wires from the blower assembly.
D. Connect high voltage wire 100 to the power supply cabinet high voltage shorting switch assembly as shown.
E. Connect ground return wire 453 to the bottom terminal of resistor R307 as shown.
F. Connect the interlock extension cable between J301 and P301.
broadcast BROADCAST
ELECTRONICS INC

FIGURE 2-9. CABINET INTERCONNECTIONS, REMOTE POWER SUPPLY CABINET INSTALLATION
G. Attach the ground connections in the cabinets as follows:

1. Connect the appropriate size braided copper wire from earth ground to the power supply cabinet ground terminal.
2. Connect the appropriate size braided copper wire from the power supply cabinet ground terminal to the PA cabinet ground strap.
3. Bolt the copper strap in the adjoining driver and PA cabinets together securely.

WARNING
ENSURE PRIMARY POWER IS DISCONNECTED BEFORE PROCEEDING.
WARNING

CAUTION
 CAUTION

THE AC DISTRIBUTION PANEL PROVIDES A 220V AC OPERATING SUPPLY FOR OPTIONAL EQUIPMENT. ENSURE ALL 220V AC AND 110V AC EQUIPMENT IS PROPERLY CONNECTED TO THE PANEL.

2-117. OPTIONAL EQUIPMENT WIRING. An ac distribution panel is provided in the cabinet for the application of ac power to the transmitter modular components. Mount and wire any optional equipment not provided with the transmitter to the distribution panel (refer to FIGURE $2-10$, page $2-28$). The ac distribution panel provides a 220 V ac operating supply for the optional equipment. Ensure all 220 V ac and 110 V ac equipment is properly connected to the panel.
2-118. SIGNAL INPUTS. Refer to the applicable technical manual for the exciter, stereo generator, and SCA generator and wire the inputs and control connections to each unit. All audio wiring should be routed in a wiring channel away from the RF circuitry located in the bottom of the cabinet.
2-119. FAILSAFE INTERLOCK. The FM-25T/FM-30T/FM-35T transmitter is equipped with a failsafe interlock circuit such as for a test load or remote control failsafe connection. The failsafe interlock circuit is independent of the transmitter safety interlock circuit and will disable only the high voltage plate supply when opened. The interlock is located at TB2-10 and TB2-11 on the transmitter remote interface panel. Refer to FIGURE 2-6, page 2-17 and connect the interlock wiring to TB2-10 and TB2-11 as shown. If unused, ensure the factory installed jumper is connected between the terminals.

ENSURE PRIMARY POWER IS DISCONNECTED BEFORE PROCEEDING.

2-120. AC POWER CONNECTIONS. The FM-25T/FM-30T/FM-35T requires a three-phase power source of 196 V to 252 V ac $50 / 60 \mathrm{~Hz}$ or 342 V to 437 V ac 50 Hz at 250 amperes per phase. The FM-35T requires a three-phase power source of 196 V to 252 V ac $50 / 60 \mathrm{~Hz}$ or a 342 V to 437 V ac 50 Hz at 300 amperes per phase. Ensure the required power source is supplied from an acceptable ac transformer configuration (refer to PRIMARY POWER). For operating safety, the power source must be routed to the transmitter through a fused power disconnect (see FIGURE 2-11, page 2-29).

FIGURE 2-10. OPTIONAL EQUIPMENT WIRING

ENSURE PRIMARY POWER IS DISCONNECTED BEFORE PROCEEDING.

WARNING

出
 WARNING
 WARNING

ENSURE AN EARTH GROUND CONDUCTOR IS SECURELY CONNECTED TO THE POWER SUPPLY CABINET GROUND TERMINAL.

2-121. Main ac Input. Refer to FIGURE 2-11, page 2-29, and connect the three-phase service to the ac distribution panel in the power supply cabinet through a fused service disconnect. Ensure a utility company ground conductor is securely connected to the power supply cabinet ground lug. For a three-phase WYE service, ensure the neutral wire is connected to terminal 4.
$2-122$. Replace the guard over the primary ac power distribution panel.
$2-123$. Adjust the ac voltage monitor (located in the PA cabinet) for a voltage equal to the transmitter main three-phase ac input.
 GRDUND STRAP

$2-124$. INITIAL CHECKOUT.

WARNING
WARNING

ENSURE PRIMARY POWER DISCONNECTED BEFORE PROCEEDING.

2-125. Replace all panels and doors on the transmitter with the exception of the PA cabinet lower front access panel. The panel must remain off at this time.
$2-126$. Ensure that the transmitter is completely installed by checking the following items.
A. Ensure primary power is correctly wired.
B. Ensure all capacitors on the high voltage rectifier stacks are perpendicular to each respective stack.
C. Ensure all RF connections are secure.
D. Ensure all connections at terminal strips are secure, especially in high current areas.
E. Ensure all ground connections are secure.
F. Ensure the cabinet ground straps are properly connected to earth ground.
G. Rotate the blower and fans by hand to ensure no obstructions are present.
H. Using an insulator, check relay operation manually to be certain all have free movement.
I. Remove any extra hardware and wire lying within the cabinets.
J. Ensure all guards at terminal strips, transformers, etc. are replaced and secure and close all doors.
K. Using a miniature flat-blade screwdriver, mechanically zero all meters.

2-127. Operate all front-panel circuit breakers to OFF and ensure all transmitter controls are preset to the positions indicated on the final test data sheets.
$2-128$. Ensure an RF load is connected to the transmitter.
2-129. Adjust the FILAMENT VOLTAGE control fully counterclockwise (minimum). A small flat-blade screwdriver is required.

2-130. Adjust the front panel IPA POWER ADJUST control fully counter-clockwise (minimum).
$2-131$. The following procedure will refer to the factory final test data sheets supplied with the transmitter. Some differences in the actual operation may be noted due to differences in primary power or antenna systems.

2-132. AC INPUT PHASE SEQUENCE CHECKOUT. (For FM-30T and FM-35T transmitters only.) Check the ac input phase sequence as follows.

2-133. Close the wall mounted fused disconnect.
2-134. Operate the BLOWER circuit breaker to ON. The HIGH VOLTAGE, CONTROL, and SCREEN circuit breakers must remain OFF.

WARNING DO NOT TOUCH ANYTHING WITHIN THE TRANSMIT－ TER WITH POWER ENERGIZED．
WARNING

2－135．With the PA cabinet lower front access panel removed，observe the ac voltage monitor which is located in the PA cabinet below the RF enclosure．The monitor indicators will illu－ minate to indicate a proper ac input phase sequence．

DISCONNECT ALL TRANSMITTER PRIMARY POWER BEFORE PROCEEDING．
$2-136$ ．Disconnect all transmitter primary ac power．
$2-137$ ．If the monitor indicators flash（refer to APPENDIX A for information on the monitor indi－ cators），correct the ac input phasing by interchanging any two of the three－phase primary ac input wires on the transmitter ac distribution panel（located in the power supply cabi－ net）．
2－138．Replace the PA cabinet lower front access panel and operate the BLOWER circuit breaker to OFF．
2－139．CONTROLLER AND INTERLOCK CHECKOUT．Check the controller and transmitter interlock circuit operation by performing the following procedures．
2－140．Controller Checkout．Close the wall－mounted fused safety disconnect．
2－141．Operate the CONTROL circuit breaker to ON．The HIGH VOLTAGE，SCREEN，and BLOWER circuit breakers must remain OFF．
2－142．Ensure the FILAMENT ON and HIGH VOLTAGE ON switch／indicators are extin－ guished．
2－143．Open the controller cabinet door and check the following items on the main circuit board．
A．Ensure the $\mathbf{- 1 5}$ indicator is illuminated．
B．Ensure the $\mathbf{+ 1 5}$ indicator is illuminated．
C．Ensure the $\mathbf{+ 5}$ indicator is illuminated．
2－144．Interlock Checkout．Complete the following procedure step by step and note the controller TRANSMITTER INTERLOCK STATUS indicator．If problems occur，deenergize all pri－ mary power and troubleshoot the series interlock circuit with an Ohmmeter．
2－145．Ensure the HIGH VOLTAGE，SCREEN，and BLOWER circuit breakers are operated to OFF．

WARNING DEENERGIZE PRIMARY POWER BEFORE PROCEED－ ING．

2－146．Operate the CONTROL circuit breaker to OFF．
2－147．Remove the PA cabinet lower front access panel．

DO NOT TOUCH ANYTHING WITHIN THE TRANSMIT－ TER WITH POWER ENERGIZED．

2－148．Operate the CONTROL circuit breaker to ON．The controller TRANSMITTER INTER－ LOCK STATUS indicator will be extinguished． ING．
WARNING

2－149．Operate the CONTROL circuit breaker to OFF．
2－150．Replace the PA cabinet lower front access panel．
2－151．Operate the CONTROL circuit breaker to ON．The controller TRANSMITTER INTER－ LOCK STATUS indicator will illuminate．

2－152．Open the PA cavity front access door．The controller TRANSMITTER INTERLOCK STATUS indicator will extinguish．

2－153．Close the PA cavity front access door．The controller TRANSMITTER INTERLOCK STATUS indicator will illuminate．
2－154．Open the PA cabinet rear door．The controller TRANSMITTER INTERLOCK STATUS indicator will extinguish．
2－155．Close the PA cabinet rear door．The controller TRANSMITTER INTERLOCK STATUS indicator will illuminate．

2－156．Open the PA cabinet rear door and perform the following：

$44 \begin{aligned} & \text { WARNING } \\ & \text { WARNING }\end{aligned}$

PERFORM THE FOLLOWING PROCEDURES AS INDI－ CATED．DO NOT TOUCH ANYTHING WITHIN THE TRANSMITTER WITH POWER ENERGIZED．

A．Depress the PA cabinet rear door interlock switch and raise the grounding stick from the hanger．The controller TRANSMITTER INTERLOCK STATUS indicator will extinguish．
B．Replace the grounding stick．The controller TRANSMITTER INTERLOCK STATUS indicator will illuminate．

C．Close the PA cabinet rear door．
$2-157$ ．Open the driver cabinet rear door．The controller TRANSMITTER INTERLOCK STA－ TUS indicator will extinguish．
$2-158$ ．Close the driver cabinet rear door．The controller TRANSMITTER INTERLOCK STA－ TUS indicator will illuminate．

2－159．Open the high voltage power supply cabinet rear door．The controller TRANSMITTER INTERLOCK STATUS indicator will extinguish．
2－160．Close the high voltage power supply cabinet rear door．The controller TRANSMITTER INTERLOCK STATUS indicator will illuminate．
$2-161$ ．Open the high voltage power supply cabinet rear door and perform the following：
PERFORM THE FOLLOWING PROCEDURES AS INDI－ CATED．DO NOT TOUCH ANYTHING WITHIN THE TRANSMITTER WITH POWER ENERGIZED．

A．Depress the high voltage power supply cabinet rear door interlock switch and raise the grounding stick from the hanger．The controller INTERLOCK STATUS indicator will extinguish．
B. Replace the grounding stick. The controller TRANSMITTER INTERLOCK STATUS indicator will illuminate.
C. Close the high voltage power supply cabinet rear door.
$2-162$. If equipment is connected to the failsafe interlock circuit, check the operation as follows:
A. Open the failsafe interlock. The controller TRANSMITTER STATUS FAILSAFE indicator will extinguish.
B. Close the failsafe interlock. The TRANSMITTER STATUS FAILSAFE indicator will illuminate.
2-163. BLOWER PHASING. Check blower operation and rotation by performing the following procedure.
2-164. Remove the blower filter from the PA cabinet rear door.
2-165. Ensure the CONTROL circuit breaker is operated to ON.
2-166. On FM-30T and FM-35T power supply cabinet font panel, operate the BLOWER circuit breaker to ON. The HIGH VOLTAGE and SCREEN circuit breakers must remain OFF.
2-167. Momentarily depress the FILAMENT ON switch/indicator then depress the FILAMENT OFF switch. The blower will begin operation. Thirty seconds later the blower will deenergize.
$2-168$. As the blower slows to a stop, the direction of rotation can be noted through the PA cabinet air filter grill. Proper rotation is shown by FIGURE 2-12.
$2-169$. If blower rotation is counterclockwise as viewed from the rear of the transmitter through the air filter grill, contact the Broadcast Electronics Customer Service Department for troubleshooting information. Do not operate the transmitter with improper blower rotation.
$2-170$. Replace the blower air filter.

FIGURE 2-12. BLOWER ROTATION
2-171. EXCITER CHECKOUT. For a transmitter equipped with an FX-50 exciter, check exciter operation by performing the following procedure. For a transmitter equipped with an FXi 60 digital exciter, refer to SECTION II, INSTALLATION in manual 597-0541 and perform the INITIAL CHECKOUT and INITIAL SETUP procedures.
2-172. Close the three-phase primary ac fused power disconnect, if opened.
2-173. Ensure the CONTROL and BLOWER circuit breakers are operated to ON. The HIGH VOLTAGE and SCREEN circuit breakers must remain OFF.

2-174. Depress the HIGH VOLTAGE ON switch/indicator.

$2-175$. Apply audio to the exciter. The presence of audio programming will be noted on the exciter digital MODULATION meter and the exciter front-panel $+20 \mathrm{~V},-20 \mathrm{~V},+5 \mathrm{~V}$, and LOCK status indicators will illuminate steadily.
2-176. Depress the exciter multimeter AFC switch.
A. The exciter multimeter will indicate a potential within the range of +2.0
volts to +9.0 volts, dependent upon carrier frequency. Refer to the final test data sheets for the correct voltage indication.

2-177. Depress the exciter multimeter PAV switch.
A. The multimeter will indicate a potential of approximately +12.0 volts (assuming the exciter is configured for a 20 watt RF power output).
2-178. Depress the exciter multimeter PAI switch.
A. The multimeter will indicate approximately 1.9 amperes (assuming the exciter is configured for a minimum RF power output).
2-179. Depress the FILAMENT OFF switch.
$2-180$. Remove the audio from the exciter.
2-181. PRELIMINARY OPERATION AND TUNING. Operate and tune the transmitter by performing the following procedure.
2-182. Ensure the CONTROL and BLOWER circuit breakers are operated to ON. The HIGH VOLTAGE and SCREEN circuit breakers must be operated to OFF.
2-183. Ensure the controller TRANSMITTER INTERLOCK STATUS indicator is illuminated. If the TRANSMITTER INTERLOCK STATUS indicator is extinguished, open the wallmounted fused disconnect and check the following:
A. All doors closed.
B. All panels installed.
C. The shorting sticks are on the hangers.

2-184. If equipment is connected to the failsafe interlock, ensure the TRANSMITTER STATUS FAILSAFE indicator is illuminated. If the indicator is extinguished, open an appropriate power source disconnect if required and check the interlock switch.
2-185. Ensure the FILAMENT ON and HIGH VOLTAGE ON switch/indicators are extinguished.
2-186. Ensure the IPA POWER ADJUST control is fully counterclockwise (minimum).
2-187. Depress the controller APC ON switch/indicator to extinguish the switch/indicator.
$2-188$. Depress the controller REMOTE DISABLE switch/indicator to illuminate the switch/indicator.
2-189. Operate the controller FWD switch/indicator to illuminate the switch/indicator.

ENSURE AN RF LOAD IS CONNECTED TO THE TRANSMITTER AND THE FILAMENT VOLTAGE CONTROL IS ADJUSTED TO APPROXIMATELY MID-RANGE.

2-190. Depress the FILAMENT ON switch/indicator. Both the FILAMENT ON switch/indicator and the FILAMENT TRANSMITTER STATUS indicator will illuminate and the blower will begin operation.

2-191. Adjust the FILAMENT VOLTAGE control to obtain a FILAMENT VOLTAGE meter indication equal to the value recorded on the final test data sheets accompanying the transmitter.

2-192. Operate the MULTIMETER switch to GRID VOLTAGE and note the presence of PA stage grid bias.

2-193. Operate the SCREEN and the HIGH VOLTAGE circuit breakers to ON.
$2-194$. Depress the HIGH VOLTAGE ON switch/indicator. Both the HIGH VOLTAGE ON switch/indicator and the HIGH VOLTAGE TRANSMITTER STATUS indicator will illuminate.

2-195. If equipment is connected to the failsafe interlock, check the failsafe interlock operation as follows:

虫
 WARNING
 WARNING

OBSERVE PROPER SAFETY PRECAUTIONS WHEN PERFORMING THE FOLLOWING PROCEDURE.
A. Open the failsafe interlock. The controller FAILSAFE TRANSMITTER STATUS and the HIGH VOLTAGE STATUS indicators will extinguish and the high voltage plate supply will be disabled.
B. Close the failsafe interlock. The plate supply will be restored, the transmitter will resume operation, and the controller FAILSAFE TRANSMITTER STATUS and the HIGH VOLTAGE STATUS indicators will illuminate.

2-196. Note the presence of PA plate voltage on the PLATE VOLTAGE meter.
2-197. Operate the MULTIMETER switch to COMBINED FWD POWER.
2-198. Adjust the IPA unit POWER ADJUST control to obtain approximately 200 to 250 watts from the IPA unit.

2-199. Operate the MULTIMETER switch to COMBINED RFL POWER.
2-200. Ensure the IPA reflected power is within the NORMAL range on the MULTIMETER. If the reflected power indication is within the HIGH range on the MULTIMETER, adjust the INPUT TUNING control for a minimum reflected power indication. TION TO ENSURE TRANSMITTER OUTPUT POWER IS PRESENT.

2-201. Note the presence of output power on the OUTPUT POWER meter. If no output power is indicated, perform the following:

1. Ensure the PA coarse tuning line is properly adjusted.
2. Adjust the OUTPUT TUNING control for a maximum indication on the OUTPUT POWER meter.

2-202. Depress and hold the controller RAISE switch/indicator. Continue to depress the switch/indicator until the OUTPUT POWER meter indicates 25% power.

2-203. Depress the controller VSWR switch/indicator to illuminate the switch/indicator.

2-204. The OUTPUT POWER meter must indicate a VSWR of less than 1.8:1. An excessive VSWR indicates improper load conditions.

2-205. Operate the controller FWD switch/indicator to illuminate the switch/indicator.
$2-206$. Operate the MULTIMETER switch to COMBINED FWD POWER.
2-207. Adjust the IPA unit POWER ADJUST control to obtain the combined IPA forward power value recorded on the factory test data sheets.
2-208. Operate the MULTIMETER switch to RFL POWER. Ensure the IPA reflected power indication is within the NORMAL range on the MULTIMETER. If the reflected power indication is within the HIGH range, reduce the IPA RF output and adjust the input tuning as follows:
A. Operate the MULTIMETER switch to FWD POWER and adjust the IPA unit POWER ADJUST control to obtain a forward power indication of 300 watts.
B. Operate the MULTIMETER switch to RFL POWER and adjust the INPUT TUNING and INPUT LOADING controls for a minimum reflected power indication. Once a minimum reflected power indication is obtained, operate the MULTIMETER switch to FWD POWER and adjust the IPA POWER ADJUST control to obtain the combined IPA forward power value recorded on the factory test data sheets.

2-209. Adjust the OUTPUT TUNING for a maximum indication on the OUTPUT POWER meter, concurrent with a minimum indication on the PLATE CURRENT meter.
2-210. Depress the controller RAISE switch/indicator. Continue to depress the switch/indicator until a 100% power indication is noted on the OUTPUT POWER meter. If a plate or screen current overload occurs, adjust the OUTPUT LOADING for better efficiency before increasing the transmitter output power.
2-211. Operate the MULTIMETER switch to COMBINED RFL POWER.
2-212. Adjust the INPUT TUNING controls for a minimum reflected power indication on the MULTIMETER.

2-213. Adjust the OUTPUT LOADING and OUTPUT TUNING controls to obtain the meter indications stated on the factory test data sheets.
2-214. Check the FILAMENT VOLTAGE meter and adjust the FILAMENT ADJUST control as required to obtain the level recorded on the final test data sheets.

CAUTION
DO NOT EXCESSIVELY UNLOAD THE PA TANK CIRCUIT IN THE FOLLOWING STEP.

2-215. Adjust the PA stage for the most efficient operation by adjusting the OUTPUT TUNING and OUTPUT LOADING controls for a maximum indication on the OUTPUT POWER meter concurrent with a minimum indication on the PLATE CURRENT meter.
2-216. Operate the MULTIMETER to COMBINED RFL POWER and adjust the INPUT TUNING and INPUT LOADING controls for a minimum reflected power indication.
2-217. Depress the controller RAISE or LOWER switch/indicators as required to obtain a 100% OUTPUT POWER meter indication.
$2-218$. Compare the meter indications to those provided on the final test data sheets. All meter indications should be approximately the same as those stated on the final test data sheets.

2-219. Depress the controller APC ON switch/indicator. The switch/indicator will illuminate and the transmitter will maintain a constant 100% rated RF output.
$2-220$. To adjust the automatic power control unit to maintain a level other than 100%, the APC ON switch/indicator must be illuminated. Depress and hold either the RAISE or the LOWER switch/indicator as desired until the desired percentage of transmitter power output is indicated by the OUTPUT POWER meter. The automatic power control circuitry will then maintain this new established RF output level.
$2-221$. If remote operation is desired, the REMOTE DISABLE switch/indicator must be extinguished. TB1-17 on the remote interface circuit board provides a status signal which can be connected to a light or alarm to remind the engineer of the status of the remote disable switch. This feature will hopefully prevent inadvertent remote lockout if the engineer should leave the transmitter site and forget to enable remote operation.

2-222. For a transmitter equipped with an FXi 60 Digital Exciter, refer to SECTION II, INSTALLATION in manual 597-0541 and perform the INSTALLATION ADJUSTMENTS procedures.

SECTION III OPERATION

3-1. INTRODUCTION.

3-2. This section identifies all controls and indicators associated with the FM-25T, FM-30T and FM-35T transmitters and provides standard operating procedures.

3-3. CONTROLS AND INDICATORS.
3-4. Refer to FIGURE $3-1$, FIGURE $3-2$ and FIGURE $3-3$, pages $3-2,3-3$ and $3-5$, for the location of all controls and indicators associated with normal operation of the FM-25T, FM-30T and FM-35T transmitters. The function of each control or indicator is described in associated TABLE 3-1, TABLE 3-2 and NO TAG, pages 3-7 and NO TAG.
3-5. OPERATION.
NOTE THE FOLLOWING PROCEDURE IS PRESENTED UNDER THE ASSUMPTION THAT THE TRANSMITTER IS NOTE COMPLETELY INSTALLED AND IS FREE OF ANY DISCREPANCIES.

3-6. TURN ON.
3-7. Operate all circuit breakers to ON.
3-8. Depress the REMOTE DISABLE switch/indicator to illuminate the switch/indicator.
3-9. Depress the FILAMENT ON switch/indicator, then depress the HIGH VOLTAGE ON switch/indicator. Each switch/indicator will illuminate as it is depressed.
$3-10$. If all interlocks are closed, the transmitter will be operational after a short delay to allow PA tube filament warm-up.

3-11. Check and log all meter indications and the status of the various indicators to assure proper equipment operation. A sample log sheet is provided in TABLE 3-4, page 3-13.
3-12. Depress the controller FWD switch/indicator to illuminate the switch/indicator and check the forward power output.

THE VSWR METER IS MOST ACCURATE WHEN THE TRANSMITTER IS OPERATED AT 100\% (NORMAL TPO) POWER. TRANSMITTER OPERATION AT A REDUCED POWER LEVEL WILL RESULT IN REDUCED VSWR METER ACCURACY.

3-13. Depress the controller VSWR switch/indicator to illuminate the switch/indicator and check VSWR.

3-14. Select the type of RF output power control:
A. If manual power control is desired, proceed as follows:

1. Depress the controller APC ON switch/indicator to extinguish the switch/indicator.

597-0096-407

FIGURE 3-1. FM-25T/FM-30T/FM-35T POWER SUPPLY CABINET CONTROLS AND INDICATORS

COPYRIGHT © 2004 BROADCAST ELECTRONICS, INC

FIGURE 3-2. FM-25T/FM-30T/FM-35T PA CABINET CONTROLS AND INDICATORS
2. Depress the APC RAISE or LOWER switch/indicator to raise or lower the transmitter RF output power as indicated by the OUTPUT POWER meter.
B. If automatic power control is desired, depress the APC ON switch/indicator to illuminate the switch/indicator. To adjust the level at which the automatic power control circuitry will maintain, proceed as follows:

1. Depress the controller APC ON switch/indicator to illuminate the switch/indicator.
2. Depress the APC RAISE or LOWER switch/indicator to establish a new RF power output level as indicated by the OUTPUT POWER meter.

3-15. If remote operation is desired, depress the REMOTE DISABLE switch/indicator to extinguish the switch/indicator. This will enable both local and remote operation.

3-16. TURN OFF.

3-17. Depress the FILAMENT OFF switch/indicator. After a period of blower operation to allow the PA tube to cool, the equipment will deenergize.
3-18. OPERATING THE TRANSMITTER FOR MAXIMUM TUBE LIFE.
3-19. Each FM-25T/FM-30T/FM-35T transmitter is equipped with an Eimac Tetrode. Maximum tube life is obtained by the implementation of a tube management program. A tube management program consists of operating and monitoring the transmitter to maintain an optimum tube filament voltage. This optimum voltage prevents premature de-carbonization of the tube filament and will result in maximum tube life. To maximize transmitter tube life, implement the procedures and operations presented in the following tube management program.

TUBE MANAGEMENT PROGRAM

1. Refer to APPENDIX A and perform the procedures presented in the Eimac publication titled "Extending Transmitter Tube Life - Eimac Application Bulletin No. 18. - March 1990".
2. Refer to APPENDIX A and the information presented in the following technical data sheets:

TRANSMITTER

FM-25T/FM-30T
FM-35T

DATA SHEET

Eimac Technical Data Sheet - 8990/4CX20000A
Eimac Technical Data Sheet - 4CX20000C
3. The procedures presented in any "Eimac Product Bulletins" shipped with the tube.

3-20. AC LINE VOLTAGE MONITOR CONTROLS. (FM-30T and FM-35T transmitters only)
3-21. Each FM-30T/35T transmitter is equipped with a three-phase ac line voltage monitor. The monitor is adjusted at the factory prior to shipment. Customer adjustment of the AC Line Voltage Monitor controls will not normally be required in the field. The following text presents the standard operating adjustments.

UPPER VOLTAGE LIMIT (upper set $\quad+7.5 \%$ of transmitter ac input voltage
of voltage controls on the unit)

LOWER VOLTAGE LIMIT (lower set of voltage controls on the unit)
ASYMMETRY 12\%
TIME $\quad 0.2$ SEC.

3-22. POWER SUPPLY CIRCUIT BREAKER TEST BUTTON.
3-23. Depress the CIRCUIT BREAKER test buttons at least once a year. The test buttons activate the circuit breaker components to maintain reliable operation during overload conditions.
3-24. CONTINUOUSLY FLASHING CONTROLLER SWITCH/INDICATOR.
3-25. The FM-25T/FM-30T/FM-35T controller is equipped with an automatic remote/local control troubleshooting feature. This feature can determine if a remote control or a front-panel control is being continuously held in operation by a device such as a defective remote control unit. If a control is continuously held in operation, the front-panel switch/indicator will flash. If this condition occurs, contact the Broadcast Electronics RF Customer Service Department.

TABLE 3-1. FM-25T/FM-30T/FM-35T POWER SUPPLY CABINET CONTROLS AND INDICATORS

$\begin{aligned} & \text { INDEX } \\ & \text { NO. } \end{aligned}$	NOMENCLATURE	FUNCTION
1	HIGH VOLTAGE Circuit Breaker	Provides overload protection and primary power control of the PA high voltage plate supply.
2	CONTROL Circuit Breaker	Provides overload protection and primary power control of all transmitter power supplies except for the PA plate supply and transmitter blower supply.
3	BLOWER Circuit Breaker (FM-30T/FM-35T)	Provides overload protection and primary power control of the blower and flushing fans.
4	CIRCUIT BREAKER Test Button	Used to activate circuit breaker components to maintain reliable circuit breaker operation.

TABLE 3-2. FM-25T/FM-30T/FM-35T PA CABINET CONTROLS AND INDICATORS (Sheet 1 of 2)

INDEX NO.	NOMENCLATURE	FUNCTION
1	OUTPUT TUNING Control and Cyclometer OUTPUT LOADING Control and Cyclometer OUTPUT POWER Meter	Tunes the PA stage output circuit to resonance.
3	Adjusts the PA stage output loading. PLATE CURRENT Meter Displays transmitter percentage of RF output power or output VSWR as selected by the POWER CONTROL FWD and VSWR switch/indicators. Displays the PA stage plate current.	
5	PLATE VOLTAGE Meter	Displays the PA stage plate potential.

TABLE 3-2. FM-25T/FM-30T/FM-35T PA CABINET CONTROLS AND INDICATORS (Sheet 2 of 2)

$\begin{gathered} \text { INDEX } \\ \text { NO. } \end{gathered}$	NOMENCLATURE	FUNCTION
6	MULTIMETER	Displays PA SCREEN VOLTAGE, SCREEN CURRENT,GRID CURRENT, GRID VOLTAGE, IPA FWD POWER, or IPA RFL POWER as selected by the MULTIMETER switch.
7	MULTIMETER Switch	Selects PA SCREEN VOLTAGE, SCREEN CURRENT, GRID CURRENT, GRID VOLTAGE, IPA FWD POWER, or IPA RFL POWER parameters to be displayed on the MULTIMETER.
8	FILAMENT VOLTAGE Meter	Indicates the PA tube filament voltage.
9	INPUT TUNING Control and Cyclometer	Tunes the PA stage input circuit to resonance.
10	PRIMARY VOLTAGE Meter	Displays PHASE 1-2, PHASE 2-3, or PHASE 3-1 primary ac input voltage potentials as selected by the PRIMARY VOLTAGE switch.
11	PRIMARY VOLTAGE Switch	Selects PHASE 1-2, PHASE 2-3, and PHASE 3-1 primary ac input voltage parameters to be displayed on the PRIMARY VOLTAGE meter.
12	FILAMENT TIME Meter	Indicates hours of filament circuit operation.
13	FILAMENT ADJUST Control	Adjusts the PA tube filament voltage.
14	GRID Circuit Breakers	Provides overload protection and primary power control for the PA grid power supply.
15	DRIVER Circuit Breakers	Provides overload protection and primary power control for the exciter, optional SCA and stereo generator units, and the IPA unit.
16	SCREEN Circuit Breaker	Provides overload protection and primary power control for the PA screen power supply.

.TABLE 3-3. FM-25T/FM-30T/FM-35T DRIVER CABINET CONTROLS AND INDICATOR (Sheet 1 of 4)

$\begin{array}{\|c} \text { INDEX } \\ \text { NO. } \end{array}$	NOMENCLATURE	FUNCTION
1	VSWR OVERLOAD Indicator	Indicates a PA stage VSWR overload has occurred when illuminated.
2	PLATE OVERLOAD Indicator	Indicates a PA plate circuit overload has occurred when illuminated.
3	SCREEN OVERLOAD Indicator	Indicates a PA screen circuit overload has occurred when illuminated.
4	GRID OVERLOAD Indicator	Indicates a PA grid power supply overload has occurred when illuminated.
5	FAILSAFE STATUS Indicator	Indicates the failsafe interlock is closed when illuminated.
6	INTERLOCK STATUS Indicator	Indicates all transmitter internal interlocks are closed when illuminated.
7	BLOWER STATUS Indicator	Indicates proper operation of the blower when illuminated.
8	FILAMENT STATUS Indicator	Indicates primary ac power is applied to the PA filament regulator when illuminated.
9	HIGH VOLTAGE STATUS Indicator	Indicates the plate power supply is operational when illuminated.
10	POWER CONTROL RAISE Switch/Indicator	SWITCH: In the automatic mode, moves the APC reference upward when depressed. In the manual mode, operates the screen control motor in a direction which will raise transmitter RF output power when depressed.
		INDICATOR: Illuminates to indicate the screen control motor is operating in a direction which will raise the transmitter RF power output.
11	POWER CONTROL LOWER Switch/Indicator	SWITCH: In the automatic mode, moves the APC reference downward when depressed. In the manual mode, operates the screen control motor in a direction which will reduce transmitter RF output power when depressed.
		INDICATOR: Illuminates to indicate the screen control motor is operating in a direction which will lower the transmitter RF power output.

TABLE 3-3. FM-25T/FM-30T/FM-35T DRIVER CABINET CONTROLS AND INDICATORS (Sheet 2 of 4)

$\begin{array}{\|c} \mid \text { INDEX } \\ \text { NO. } \end{array}$	NOMENCLATURE	FUNCTION
12	POWER CONTROL APC ON Switch/Indicator	SWITCH: Selects APC control operation of the transmitter. INDICATOR: Indicates the transmitter is under APC control when illuminated.
13	MODEM PORT 1	A modem port used with a future transmitter monitoring and diagnostic option.
14	POWER CONTROL REMOTE DISABLE Switch/Indicator	SWITCH: Inhibits or enables transmitter remote operation. INDICATOR: Indicates remote operation is inhibited when illuminated.
15	POWER CONTROL VSWR Switch/Indicator	SWITCH: Configures the OUTPUT POWER meter to display VSWR. INDICATOR: Illuminates to indicate the OUTPUT POWER meter is configured to display VSWR.
16	POWER CONTROL PRESET Switch/Indicator	SWITCH: Selects transmitter operation at a preset RF power output level. INDICATOR: Indicates transmitter operation at a preset RF power level (such as half power) when illuminated.
17	POWER CONTROL FWD Switch/Indicator	SWITCH: Configures the OUTPUT POWER meter to display forward power. INDICATOR: Illuminates to indicate the OUTPUT POWER meter is configured to display forward power.
18	AM NOISE TEST Receptacle	Test receptacle for AM noise measurements.
19	HIGH VOLTAGE ON Switch/Indicator	SWITCH: Energizes the step/start contactors when depressed to activate the plate and screen power supplies and enables the RF drive. INDICATOR: Indicates a high voltage-on command has been received by the transmitter controller.
20	HIGH VOLTAGE OFF Switch/Indicator	SWITCH: Deenergizes the plate and screen power supplies and mutes RF drive when depressed. INDICATOR: Indicates a high voltage-off command has been received by the transmitter controller.

TABLE 3-3. FM-25T/FM-30T/FM-35T DRIVER CABINET CONTROLS AND INDICATORS (Sheet 3 of 4)

$\begin{array}{\|c\|} \hline \text { INDEX } \\ \text { NO. } \end{array}$	NOMENCLATURE	FUNCTION
21	FILAMENT OFF Switch/Indicator	SWITCH: Deenergizes all transmitter RF circuit power. The blower and flushing fans will operate for approximately thirty-five seconds after the FILAMENT OFF switch has been depressed. INDICATOR: Indicates a filament-off command has been received by the transmitter controller.
22	FILAMENT ON Switch/Indicator	SWITCH: 1) Energizes the control contactor when depressed to apply voltage to the exciter, IPA unit, filament circuitry, and grid circuitry. 2) Energizes the blower and flushing fans. INDICATOR: Indicates a filament-on command has been received by the transmitter controller.
23	OVERLOAD RESET Switch/Indicator	SWITCH: Clears the overload circuit memory when depressed. INDICATOR: Indicates an overload condition exists when illuminated.
24	MODULE DRIVE Indicator	Illuminates to indicate the presence of RF drive at the RF power amplifier module.
25	MODULE STATUS Indicator	Displays the operating status of the RF power amplifier module. RED DISPLAY: Indicates an RF power module fault. RF power module faults include: 1) over-current, 2) over-temperature, 3) high reflected power, and 4) high forward power demand. YELLOW DISPLAY: Indicates an RF power module current limit, VSWR limit, high forward power demand limit, or transmitter off condition. GREEN DISPLAY: Indicates normal RF power module output operation. Will illuminate if no RF drive is present.
26	POWER ADJUST Control	Adjusts the IPA RF power output.
27	POWER SUPPLY FAULT Indicator	Illuminates to indicate an IPA power supply fault.
28	VSWR FAULT Indicator	Illuminates to indicate a 30 watt reflected power condition is present at the IPA RF output.
29	OVER TEMP FAULT Indicator	Illuminates to indicate a greater than 80 Degree C condition is present at the RF power module heatsink.

TABLE 3-3. FM-25T/FM-30T/FM-35T DRIVER CABINET CONTROLS AND INDICATORS (Sheet 4 of 4)

$\begin{array}{\|l} \mid \text { INDEX } \\ \text { NO. } \end{array}$	NOMENCLATURE	FUNCTION
30	FAULT RESET Switch/Indicator	SWITCH: Clears the fault circuitry if: 1) the switch is depressed and 2) the fault condition is removed.
		INDICATOR: Illuminates to indicate: 1) a power supply fault, 2) a VSWR fault, or 3) a module over temperature fault. During high temperature and VSWR faults, the controller will foldback IPA forward power to maintain operation.
31	POWER Circuit Breaker	Provides overload protection and primary power control for the IPA.
32	MODEM PORT 2	A modem port used with a future transmitter monitoring and diagnostic option.
33	PRINTER PORT	A printer port used with a future transmitter monitoring and diagnostic option.
34	LOCAL PORT	A communication port used with a future dual/main/alternate transmitter control system.

TABLE 3-4. INDICATOR CHECKLIST

SECTION IV THEORY OF OPERATION

4-1. INTRODUCTION.

4-2. This section presents the theory of operation for the Broadcast Electronics FM-25T, FM-30T and FM-35T transmitters.

4-3. The FM-25T/FM-30T/FM-35T transmitters are divided into functional blocks which are discussed by the following text. The functional blocks consist of the FM exciter, the intermediate power amplifier (IPA), the power amplifier, the transmitter controller, metering circuitry, and the associated power supply circuitry. The power supply and RF circuitry are discussed in further detail at the end of this section. The IPA and the transmitter controller are described in detail by the modular publications in Part II of this manual. Refer to FIGURE 4-1, page 4-3 and the overall schematic diagram in SECTION VII as required for the following explanation.

4-4. ELECTRICAL DESCRIPTION.
4-5. FM EXCITER.
4-6. The Broadcast Electronics FX-50 is a totally solid-state wideband FM exciter providing a continuously variable RF output from 3 to 50 watts. The FX- 50 operates into a 50 Ohm load at any frequency within the 87.5 to 108 MHz FM broadcast band. The exciter is equipped with a digital frequency synthesizer which may be programmed to any frequency within the FM band in 10 kHz increments. The FX-50 exciter is mounted on slides to allow easy access to the internal semi-modular exciter circuitry.

4-7. The FX-50 will accept multiple wideband composite inputs from a stereo generator or SCA generator as well as a 600 Ohm balanced audio input. Refer to publication 597-1050 for a detailed explanation of the FX-50 exciter features.

4-8. FXi 60 DIGITAL EXCITER. The transmitter may also be equipped with the optional FXi 60 digital FM exciter. The FXi 60 is a solid-state wideband FM digital exciter providing a continuously variable RF output at any frequency within the 87.5 to 108 MHz FM broadcast band in 10 kHz increments. The FXi 60 is divided into several board assemblies. The assemblies include: 1) DSP (Digital-Signal_Processor) Modulator, 2) Controller, 3) Oscillator/Filter, 4) RF Power Amplifier, 5) Power Supply, and 6) Color GUI Interface. The FXi 60 will be equipped with a 60 watt RF power amplifier module.

4-9. The FXi 60 is highly integrated and comes with the following standard features: 1) AES Input, 2) L \& R Analog Inputs, 3) Balanced and Unbalanced Composite Inputs, 4) Two internal SCA Generators, 5) Internal RDS Generator, and 6) External SCA/RDS Inputs. The FXi 60 also has a built in stereo generator, compressor, and limiter all of which are software programmable and defeatable. The exciter also provides modulation Directly To Channel (DTC) $87.5-108 \mathrm{MHz}$, eliminating any analog up converter processes. The Chassis of the FXi 60 requires 7 inches of a 19 inch rack cabinet. Refer to publication 597-0541 for a detailed explanation of the FXi 60 features.

4-10. INTERMEDIATE POWER AMPLIFIER UNIT.

4-11. The IPA unit consists of: 1) an RF power module, 2) a switching power supply module for the amplifier circuit, 3) a switching power supply module for the controller circuitry, and 4) a controller. The IPA unit RF power module provides an overall gain of approximately 20 to output approximately 375 watts of power to drive the FM-25T/FM-30T/FM-35T PA stage. RF drive for the IPA stage is provided by the exciter. The output of the exciter is routed directly to the IPA stage. The IPA unit outputs approximately 375 watts of power to drive the transmitter PA stage. The IPA stage is also equipped monitoring and metering circuitry.

4-12. The RF amplifier module consists of an RF amplifier circuit board, a logic circuit board, a combiner, and a low-pass filter circuit board, and a directional coupler circuit board assembly. The RF amplifier circuit board contains a microstrip splitter, microstrip and capacitive matching networks, and two power MOSFET transistors. The circuitry is designed to generate approximately 500 watts of RF power. The RF amplifier module logic circuit board is equipped with: 1) a power level control circuit, 2) over-voltage, over-current, over-temperature circuitry, 3) fault detection circuitry, and 4) reflected/forward power limit circuitry. The combiner circuit board contains a microstrip combiner. The directional coupler circuit board is equipped with a forward power directional coupler circuit and a reflected power directional coupler circuit. The low-pass filter circuit board is equipped with a low-pass filter circuit.

4-13. POWER AMPLIFIER.

4-14. The FM-25T/FM-30T/FM-35T power amplifier operates from a single high-power efficient tetrode to provide the following RF power outputs on a single frequency within the FM broadcast band of 87.5 MHz to 108 MHz .

TRANSMITTER	TUBE	RF OUTPUT POW
FM-25T	$8990 / 4 \mathrm{CX} 20000 \mathrm{~A}$	7.5 kW TO 25 kW
FM-30T	$8990 / 4 \mathrm{CX} 20000 \mathrm{~A}$	7.5 kW TO 30 kW
FM-35T	4 CX 20000 C	10 kW TO 38 kW

4-15. The power amplifier operates in a high-gain, grid-driven Class C configuration. An adjustable grid input circuit matches the 50 Ohm output of the IPA unit to the higher grid input impedance. Removal of the PA tube is simple and quick due to the cavity arrangement. A massive blower cooling system forces air through the tube socket, anode fins, and out through the main transmission line chimney. A differential air pressure sensor monitors the effectiveness of the cooling system and removes power to the tube if air flow is interrupted.

4-16. POWER AMPLIFIER CAVITY. The FM-25T/FM-30T/FM-35T PA stage employs a patented folded half-wave coaxial transmission line cavity constructed with aluminum sheet metal and copper tubing. The cavity design eliminates the high voltage blocking capacitors and high current sliding contacts of conventional cavities through a unique tuning and output coupling technique. A grounded concentric copper center conductor tunes the cavity by varying the length inserted into the open end of a main transmission line inner conductor. The main inner conductor is insulated from ground and carries the anode dc potential. DC power is applied at the RF voltage null point, approximately one-quarter wave from the anode for effective RF decoupling. An untuned output loop is used to couple the RF energy into the transmission line.

4-17. OUTPUT COUPLING. Energy is coupled into the transmission line by an adjustable untuned loop which functions in the electromagnetic field within the cavity. One end of the output loop is connected to ground, while the other connects to the center conductor of the output transmission line through flexible straps.

4-18. OUTPUT TUNING. Output tuning is accomplished by adjusting a threaded rod which mechanically expands or contracts a beryllium copper bellows on the end of the grounded transmission line center conductor which is inserted into the main line. Coarse frequency adjustment is accomplished by pre-setting the length of the center conductor into the cavity.
4-19. NEUTRALIZATION. Neutralization is accomplished in the PA cavity by distributed inductance added in parallel to the screen bypass capacitors to develop a counteractive voltage swing between the screen and ground. This cancels out the voltage fed through the internal capacitances of the tube and the stray capacitances of the tube socket. This form of self-neutralization results in very stable operation and requires no adjustment when the power tube is replaced.
4-20. SECOND HARMONIC SUPPRESSOR. A patented second harmonic suppressor is incorporated into the PA cavity design. This consists of a capacitive disc and a series inductance to ground coupled to the main transmission line at the fundamental frequency RF voltage null point. Here the second harmonic exhibits a high voltage and the suppressor presents a low impedance which reduces the amplitude of the second harmonic. This unique method of harmonic suppression has minimal effect on the fundamental frequency and does not add losses to the PA cavity at the fundamental frequency.
4-21. OUTPUT CIRCUIT. A low-pass filter is provided with the FM-25T, FM-30T and FM-35T transmitters to attenuate all residual second and higher order harmonics. This filter functions over the entire FM broadcast band. Two RF directional couplers are mounted after the filter in the output transmission line connection to provide filtered forward and reflected power RF samples to the automatic power control unit. A third port supplies an RF sample at 40 dB below carrier at 50 Ohms for external test equipment.

4-22. TRANSMITTER CONTROLLER.

4-23. Transmitter control operations and parameter monitoring are performed by a built-in microprocessor based controller. The controller incorporates extensive use of RFI filtering, optical isolation, and state-of-the-art microprocessor technology to assure maximum reliability.
4-24. The controller is designed with 12 switch/indicators, 9 status indicators, 3 modem ports, and a printer port. Adjustable timers are provided to determine filament warm-up time, blower run-down time, overload-recycle time, and warm-up defeat time. In addition, the controller is equipped with adjustable plate, screen, grid, and VSWR overload limits. The timers and the overload limits are adjusted by controls on the main circuit board. The range of all controls is limited, however so that the safe operating limits of the transmitter cannot be exceeded by incorrect adjustment.
4-25. All transmitter control and monitoring operations are directed by a state-of-the-art Z-SOFT microcontroller. The microcontroller is housed on a single plug-in daughter circuit board. The circuit board plugs directly into a header on the controller main circuit board.
4-26. The controller operates from a modular switching power supply assembly. Three LEDs on the main circuit board monitor the status of the $+5 \mathrm{~V},+15 \mathrm{~V}$, and -15 V power supplies. A Lithium battery backup system has been incorporated into the circuit design. The battery is designed to maintain the controller memory during power failures and has a useful life of approximately 2 years.

4-27. The transmitter controller performs several operations. The following text presents a description of the major controller functions.

4-28. AUTOMATIC RF OUTPUT LEVEL CONTROL. The controller is designed to provide manual and automatic RF output power level controller. When the unit is configured for automatic power control (APC) operation, the controller monitors screen current, PA forward power, PA reflected power, and the exciter forward power and automatically adjusts the PA screen voltage via a dc servo motor-driven variable autotransformer to maintain a constant transmitter RF output. If excessive PA reflected power, excessive screen current, or low exciter power is measured, the "raise power" command will be inhibited to prevent an overload from occurring. Manual screen control is assumed by switching the APC feature to off. In the manual mode the raise and lower switches directly control the de servo motor to vary the screen voltage supply. In the APC mode, the switches control a reference voltage stored in the microprocessor memory. This memory is maintained by the battery backup system so that the transmitter can automatically return to the desired power level whenever power is applied.

4-29. The dc servo motor control circuit uses a full-on/full-off scheme to drive the dc servo motor. This feature, combined with a deadband, eliminates hunting in this servo loop. The front panel RAISE and LOWER switches illuminate when the motor is driven by manual or automatic operation.

4-30. VSWR FOLDBACK PROTECTION. When the unit is in the APC mode, PA forward power is automatically reduced if output reflected power becomes excessive enough to overload the transmitter. As the condition which caused the high VSWR returns to normal, RF power will be proportionately raised until full power is again restored.

4-31. SOFT START. The controller monitors PA plate voltage and reduces the screen voltage to zero upon its absence. When the plate supply is energized, as during initial turn on, the controller will gradually increase the screen voltage until the stored power setting is achieved. This prevents inadvertent VSWR overloads at turn on, such as during icing of an antenna.

4-32. MOMENTARY POWER INTERRUPTION. In the event of a momentary power interruption, proper transmitter operation will resume immediately after power returns. If an extended power failure occurs, information maintained by the battery back-up system will enable the controller to initiate a start cycle to automatically return the transmitter to operation without assistance. If the transmitter internal interlock string opens during a power failure, the automatic restart feature will be defeated and the transmitter will enter the off condition when power is re-applied.

4-33. OVERLOADS. If an overload occurs, the transmitter will deenergize, allow the overload to clear, then automatically return to operation. If four overloads occur within 60 seconds, the transmitter will deenergize. The overload must be manually cleared and the transmitter HIGH VOLTAGE ON switch/indicator depressed before operation will resume. Single overloads of greater than 220 milliseconds duration will immediately deenergize the high voltage and filament supplies.

4-34. INDICATORS. Four LEDs are provided on the front panel as overload status indicators. The first overload that occurs will be latched into the controller and will illuminate the appropriate red VSWR, PLATE, SCREEN, or GRID LED and the yellow overload reset switch/indicator. All further overloads are monitored by the controller but will not be displayed by the LEDs.

4-35. Five STATUS indicators illuminate to indicate an operational condition as follows: 1) the FAILSAFE LED indicates the external interlock is closed, 2) the INTERLOCK LED indicates that the internal interlock loop is closed, 3) the BLOWER LED indicates that the air pressure is correct for the PA stage to operate, 4) the FILAMENT LED indicates primary ac power is applied to the filament transformer, and 5) the HIGH VOLTAGE LED indicates primary ac power is applied to the high voltage plate supply.

4-36. METERING.

4-37. Seven front panel meters are provided to indicate transmitter operating parameters. Output power and output VSWR indications are presented on a precision output power meter. Plate voltage and plate current information are displayed on separate meters for optimum convenience.

4-38. Additional transmitter metering features include a six function multimeter. The multimeter selects and displays information on vital transmitter operating parameters such as: 1) screen current, 2) screen voltage, 3) grid current, 4) grid voltage, 5) IPA forward power, and 6) IPA reflected power. An iron-vane voltmeter is used to measure filament voltage. A FILAMENT TIME meter is provided to indicate hours of filament circuit operation. Primary ac voltage monitoring is provided by a primary ac voltmeter. The meter selects and displays the voltage between all three phases of the ac input. All meter currents are measured on the ground side of each supply to prevent high voltages across the meters.

4-39. EXCITER METERING. The FX-50 exciter operating parameters are displayed by two additional meters and seven status indicators. For detailed information on the FX-50 meter and indicator circuitry, refer to FX-50 exciter manual 597-1050. The FXi 60 operating parameters are displayed on the GUI Interface. For detailed information on the FXi 60 meter and indicator circuitry, refer to FXi 60 manual 597-0541.

4-40. THREE-PHASE AC VOLTAGE MONITOR. A three-phase ac voltage monitor provides accurate voltage and phase monitoring of the primary ac input. The monitor will deenergize the transmitter if a low voltage, voltage unbalance, loss of phase, or a phase reversal condition occurs.

4-41. POWER SUPPLIES.
4-42. A three-phase ac input of 196 to 252 volts or 340 to 437 volts is required to operate the transmitter internal power supplies. The plate power supply and the blower circuitry require a three phase ac input supply with the remainder of the power supplies requiring conventional 220 V single-phase circuits obtained from two phases of the three-phase input. Power to the plate supply is applied in two steps to reduce the inrush current at power-on to limit stress and extend component life in the plate supply.

4-43. The control grid bias and screen power supplies consist of conventional full-wave rectification circuits with choke input filter sections. A hum-null circuit consisting of a transformer and potentiometer assembly injects a small 60 Hz component in series with the ground return of the screen supply to cancel residual ripple from the tetrode amplifier.

4-44. The plate supply is a three-phase primary, six-phase secondary supply. The primary circuit is connected in a closed delta arrangement and the secondary is connected in a wye configuration. Advantages of this type of supply is good regulation and a low percentage of ripple output which requires little filtering.

4-45. The filament supply consists of a variable transformer assembly which is used to adjust a high-current low-voltage regulator assembly. The regulator assembly is designed to regulate a wide range of ac input potentials to create a stable $240 \pm 1 \%$ volt output for the filament transformer.

4-46. Each modular component of the transmitter is equipped with a self-contained ac power supply. In addition, a battery back-up supply in the transmitter controller maintains operational information during power outages.

4-47. DETAILED DESCRIPTION.

4-48. POWER SUPPLIES.

4-49. The FM-25T requires a three-phase power source of 196 V to 252 V ac $50 / 60 \mathrm{~Hz}$ or 339 V to 437 V ac 50 Hz at 200 amperes per phase. The FM-30T requires a three-phase power source of 196 V to 252 V ac $50 / 60 \mathrm{~Hz}$ or 339 V to 437 V ac 50 Hz at 250 amperes per phase. The FM-35T requires a three-phase power source of 196 V to 252 V ac $50 / 60 \mathrm{~Hz}$ or a 339 V to 437 V ac 50 Hz at 300 amperes per phase (refer to FIGURE $4-2$, page $4-9$).
The following list presents approximate operating voltage and currents of the transmitter supply circuits for the rated RF power output.

FM-25T

PARAMETER

A. PA PLATE
B. PA SCREEN GRID
C. PA CONTROL GRID
D. PA FILAMENT

FM-30T

PARAMETER

A. PA PLATE
B. PA SCREEN GRID
C. PA CONTROL GRID
D. PA FILAMENT

FM-35T

PARAMETER

A. PA PLATE
B. PA SCREEN GRID
C. PA CONTROL GRID
D. PA FILAMENT

APPROXIMATE VALUES

+9100 V at 3.6 Amperes
+400 V at 0.20 Amperes
-260 V at 0.080 Amperes
10 V ac at 140 Amperes

APPROXIMATE VALUES

+9500 V at 4.5 Amperes
+550 V at 0.240 Amperes
-260 V at 0.085 Amperes
10 V ac at 140 Amperes

APPROXIMATE VALUES

$+10,500 \mathrm{~V}$ at 4.5 Amperes
+730 V at 0.230 Amperes
-260 V at 0.040 Amperes
10 V ac at 140 Amperes

4-50. SEQUENCE OF OPERATION.
4-51. When the transmitter fused disconnect is closed, three-phase ac power is distributed to: 1) the HIGH VOLTAGE circuit breaker, 2) the CONTROL circuit breaker and 3) the BLOWER circuit breaker. Closing the HIGH VOLTAGE, CONTROL, and BLOWER circuit breakers routes ac power to the following circuitry:

CIRCUIT BREAKER

HIGH VOLTAGE
CONTROL

BLOWER (FM-30T/FM-35T)

CIRCUITRY

Power amplifier plate supply.
Transmitter controller and a transmitter ac control circuit (grid supply, screen supply, filament supply, exciter, IPA, and optional stereo and SCA generators).

Blower, flushing fan, three-phase voltage monitor, and optional three-phase meter circuitry.

4-52. A start sequence is initiated when the FILAMENT ON switch/indicator is depressed. Logic from the controller will enable blower optically-coupled-relay K202. K202 will energize blower contactor K201 which applies ac power to blower B201 and flushing fans B101 and B102. After the blower begins operation, the air interlock switch will close. With the air interlock and all transmitter safety interlocks closed, logic from the controller will enable control contactor optically-coupled-relay K305. K305 will energize control contactor K302 which applies ac power to the PA filament supply, the screen supply, the grid bias supply, and to a driver ac control circuit. With the DRIVER circuit breakers closed, power is applied to the exciter, optional stereo and SCA generators, and the IPA unit.

4-53. Assuming the HIGH VOLTAGE ON switch/indicator has been depressed, and the PA filament heating delay of at least ten seconds has expired, logic from the controller will enable step/start contactor optically-coupled-relays K303 and K304. K303 will energize step contactor K301 which limits plate supply current inrush through resistors R311, R312, and R313. K304 will energize start contactor K300 to apply full input potential to the plate and screen power supplies.
$4-54$. If during a start sequence an internal interlock opens, the entire start sequence will be cancelled and must be re-initiated manually. If interlock opens during operation, the entire power supply section will deenergize. If the interlock is promptly closed, the blower and flushing fans will resume operation to cool the PA tube. To continue transmitter operation, a new manually initiated start sequence is required.

4-55. If the HIGH VOLTAGE OFF switch/indicator is depressed, the plate and screen power supplies will deenergize. If the FILAMENT OFF switch/indicator is depressed, all remaining power supplies will deenergize. The blower and flushing fans will continue operation for 30 seconds or more to cool the PA tube, then deenergize.

4-56. PA PLATE POWER SUPPLY.
$4-57$. Three-phase ac power for the PA plate supply is applied to transformer T300. T300 is a three-phase primary, six-phase secondary transformer. The primary winding is connected in a closed delta arrangement and protected by circuit breaker CB300. The secondary winding is connected in a wye configuration. Component stress at power on is eliminated by a step/start circuit which limits supply in-rush current.

4-58. Full-wave rectification is accomplished through high-voltage rectifier diodes D300 through D305. A one-half voltage supply tap is provided for transmitter troubleshooting.

4-59. Filtering for the supply is accomplished by a one-section choke-input filter (L300). The choke is inserted in the negative leg of the rectified output to eliminate the dc potential between the choke and ground. The negative leg of the supply is referenced to ground through the PA stage current meter shunt. Shunt capacitor C300 bypasses residual ac ripple frequencies above 360 Hz to ground. Bleeder resistors R301 through R304 increase regulation and in conjunction with the high voltage discharge switches enhance safety. A series resistance in the anode dc feedline limits peak energy in case of arc-overs in the power amplifier stage.

4-60. Component stress at power-on is eliminated by a step/start circuit which limits the plate supply in-rush current. The step/start circuit is interlocked through the control contactor to assure the filament circuit is energized before a high-voltage-on sequence is initiated. A high-voltage-on sequence begins when the controller energizes step contactor K301 via K303. After 100 milliseconds, the controller will energize start contactor K300 via K304. Next, the step contactor will deenergize after 160 milliseconds. In this manner, the current limiting resistors will only be subject to heating during a 100 millisecond interval between the step contactor and start contactor closures.

4-61. PA SCREEN POWER SUPPLY. The screen power supply is a full-wave bridge-rectified supply with a single L-section filter. Overload protection for the circuit is provided by circuit breaker CB202. The primary of screen transformer T202 is connected to a variable auto transformer which is used to adjust the screen supply output. A dc motor connected to the variable autotransformer allows both manual and automatic control of the screen voltage. Bleeder resistors R209 and R210 improve regulation and enhance safety.

4-62. Hum-Null Circuit. The ground path of the screen supply is routed through a hum-null circuit which introduces a small 60 Hz voltage into the screen supply to cancel hum. The amplitude and phase of the 60 Hz signal is adjusted by resistor R216. The canceling voltage is out-of-phase with the 60 Hz ripple component of the screen supply.
4-63. PA CONTROL GRID BIAS POWER SUPPLY. The control grid bias supply is a fullwave bridge-rectified supply with a single L-section filter. The circuit is protected from overloads by circuit breakers CB200 and CB201. Primary power transformation is provided by transformer T200. Bleeder resistor R202 improves regulation and enhances safety by discharging C202. Potentiometer R214 is provided to limit the current in-rush.

4-64. PA FILAMENT SUPPLY. The PA filament supply is a low-voltage high-current ac supply. Filament voltage regulator VR203 provides a stable ac input voltage environment. Variable transformer T204 allows accurate filament voltage adjustment. A FILAMENT TIME meter indicates hours of filament circuit operation.

4-65. RF CIRCUITRY.
4-66. FM EXCITER. The modulated FM signal for RF circuit operation is generated by the FM exciter (refer to FIGURE 4-3, page 4-13). Approximately 20 Watts of drive is required from the exciter to operate the FM-25T/FM-30T/FM-35T IPA unit. Refer to publication 597-1050 for a complete description of the FM exciter.

4-67. INTERMEDIATE POWER AMPLIFIER UNIT. The FM-25T/FM-30T/FM-35T IPA unit consists of: 1) an RF power module, a switching power supply module, and a controller. The IPA unit provides an overall gain of approximately 11 to output approximately 375 watts of power to drive the PA stage.

4-68. RF Power Module. The output of the exciter is applied to solid-state 500 watt RF amplifier module. The RF amplifier module consists of an RF amplifier circuit board, a logic circuit board, a combiner, and a low-pass filter circuit board, and a directional coupler circuit board assembly. The RF amplifier circuit board consists of a two-stage power MOSFET amplifier circuit with input/output matching and balun circuitry. The logic circuit board controls the operation of the RF amplifier circuit and monitors the circuit for fault conditions. A combiner circuit combines the outputs of the two stages to provide a single 500 watt output. The low-pass filter circuit board removes all frequencies above the FM broadcast band. The directional coupler circuit board provides forward and reflected power samples to the logic circuit board.

4-69. Switching Power Supply Module. The IPA stage is equipped with a switching power supply module. The module provides a variable +48 V dc supply to the RF power amplifier module. The module is equipped with over-current, over-voltage, under-voltage, and over-temperature protection circuitry. The output of the supply is controlled by the IPA controller.

4-70. IPA Controller. The IPA stage is equipped with a controller. The controller is designed to monitor the operation of the RF amplifier module and the switching power supply module. The controller circuitry consists of three indicators, a power adjust control, and a reset switch. The three indicators present the status of IPA reflected power, over-temperature, and power supply fault. The power adjust control adjusts the IPA unit output power. The reset switch resets the fault circuitry after an over-temperature, VSWR, module fault, or a power supply fault condition.

4-71. POWER AMPLIFIER. The FM-25T/FM-30T/FM-35T PA stage contains a single tetrode operated as a class C amplifier in a folded half-wave cavity to provide the rated RF power output. The amplifier operates in a grid driven configuration and exhibits high efficiency and ease of maintenance. The following text describes the operation of components and circuits within the PA stage.

4-72. PA Input Circuit. The transmitter IPA stage impedance is matched to the tube grid impedance by an input matching circuit board assembly. The circuit board consists of series inductor and shunt capacitor elements which are etched into the copper-clad laminate. The multiple LC sections match the 50 Ohm IPA impedance to the higher grid circuit impedance of the PA tube. The last LC section on the circuit board is equipped with four taps. Tap B provides standard input matching characteristics. Taps A, C, and D provide alternate input matching characteristics for special operating conditions.

4-73. The input circuit is adjusted to match the 50 Ohm IPA impedance to the higher input impedance of the grid over the 88 MHz to 108 MHz FM broadcast band by input tuning inductor networks L10/C11, L19/C19, and L9/C10. The LC networks are connected in parallel and employ sliding shorts to tune the grid capacitance to resonance. C10, C11, and C19 also function as RF bypass and de blocking capacitors.

4-74. The L19/C19 network is configured as a frequency dependent coarse tuning component. The L10/C11 network is also configured as a coarse tuning component and is adjusted by a control at the side of the RF enclosure. Fine tuning is accomplished by the L9/C10 network which is mechanically connected to the front panel input tuning control. Capacitors C4 and C5 are provided for dc blocking operations. Swamping network R2/C16 lowers the Q of the input circuit to increase the bandwidth. This input tuning circuit design provides a wide operating bandwidth and improves the reliability, stability, and maintainability of the transmitter.

4-75. The PA tube screen ring is connected to dual parallel adjustable LC neutralization networks. The LC neutralization networks consist of: 1) inductor L7/A and RF bypass capacitor C7,2) inductor L8/A and RF bypass capacitor C8,3) inductor L17/A and RF bypass capacitor C17, and 4) inductor L18/A and RF bypass capacitor C18. The networks are configured as adjustable strap inductors which are inserted into the Kapton RF bypass capacitors (C7,C8,C17,C18). Neutralization is accomplished by adjusting the length of the straps which varies the series screen grid inductance. This introduces an out-of-phase current component causing a voltage swing across the screen to ground which cancels internal ac feedthru components. Spark-gaps E1 and E2 are provided to safely conduct energy if the tube should arc internally.
4-76. RF choke RFC2 and bypass capacitor C15 operate in conjunction to short any screen supply RF voltages to ground. RFC3 and C20 function in a similar manner by shorting any bias supply RF voltages to ground. C12A/B/C are configured as filament bypass capacitors and are incorporated into the tube socket assembly. Inductors L11, L12, L14, L15 and L16 are tube socket mounting components and are frequency dependent.
4-77. Power Amplifier Cavity. The PA cavity used in the FM-25T/FM-30T/FM-35T employs a folded half-wave coaxial transmission line resonator constructed with aluminum and copper tubing (see FIGURE 4-4, page 4-17). The design eliminates the high voltage blocking capacitors and high current shorting contacts of conventional cavities. A grounded concentric center conductor tunes the cavity with a variable re-entrant length inserted into the end of a main transmission line inner conductor. The main inner conductor is insulated from ground and carries the anode dc potential. DC power is fed at the RF voltage null point which is approximately one-quarter wave from the anode for effective RF decoupling. An untuned loop operating in the electromagnetic field is used to couple the RF energy into the transmission line. Rather than attenuating the second harmonic after the signal has been generated and amplified, the circuitry within the cavity essentially eliminates formation of the second harmonic component.
4-78. Plate tuning is accomplished by an adjustable bellows on the grounded or center portion of the plate line which is maintained at chassis ground potential. The PA plate potential is applied to the main conductor (the fixed portion of the plate line) at the fundamental frequency $R F$ voltage null point which is also the second harmonic peak voltage point. Second harmonic suppression is accomplished by a series LC circuit consisting of L214 and C235 which is inserted at the peak voltage point to essentially eliminate the second harmonic component. RF suppressor resistor R3 is incorporated into the cavity design in FM-35T modules.

4-79. PA Output Circuit. Output coupling is accomplished with an untuned loop intercepting the magnetic field concentration at the voltage null point of the main line. The PA loading control varies the angular position of the plane of the loop with respect to the plate line, changing the amount of magnetic field which it intercepts. Multiple phosphor bronze leaves connect one side of the output loop to ground and the other side to the center conductor of the output transmission line connection. This allows for mechanical movement of the loop by the PA loading control without utilizing any sliding contacts. The grounded loop improves immunity to lightning and static buildup on the antenna connection.
4-80. A pair of directional couplers located in the output transmission line provide RF output voltages proportional to the PA forward and reflected power. The RF output voltages provide power and VSWR samples for the output power meter, the transmitter controller, and inputs to the automatic power control unit. An additional port in the transmission line provides a connection for a station modulation monitor.

597-0096-25
.FIGURE 4-4. PA CAVITY
$4-81$. PA Metering. Seven meters are used to indicate transmitter operating parameters. The plate current, multimeter, and the filament voltage meters measure samples from a PA metering circuit board which is mounted on the side of the RF enclosure. Additional samples from this circuit board are routed to the controller for overload and diagnostic features. The PA metering circuit board also contains fuses which protect the filament meter wiring. Plate voltage metering is obtained from a high voltage meter multiplier circuit board. Power output metering is derived from circuitry within the controller. A filament time meter indicates total elapsed time of filament circuit operation. The filament voltage meter is an iron vane type and accurately measures the filament voltage at the cavity feed-thru terminals. Monitoring of ac input potentials is provided by a primary ac voltage meter.

4-82. AUTOMATIC POWER CONTROL. The transmitter controller monitors a number of transmitter parameters to function as part of a closed loop which maintains a constant RF output level from the transmitter (see FIGURE 4-3, page 4-13).

4-83. PA forward and reflected power samples from the transmitter low-pass filter are applied to individual rectifier/amplifier circuits in the controller. The outputs from the rectifier/amplifier circuits are routed to analog-to-digital (A-to-D) circuitry. The A-to-D circuitry converts the signals to a digital format and routes the signals to the microprocessor. The microprocessor uses the signals: 1) to output forward power and VSWR samples to the output power meter, 2) to output forward and reflected power samples to the remote meter terminals, and 3) for automatic RF output power control operations. The controller monitors several parameters such as the forward and reflected power, screen current, and IPA forward power to determine if power control and correction is required. When automatic power control is enabled and power correction is required, the controller will use the adjustable screen supply autotransformer to obtain the desired power level.

4-84. When APC operation is enabled and as RF output power varies, the controller will act to maintain the established RF output level. If inadequate IPA drive exists for normal operation, PA reflected power increases, or if screen current is high, any power increase will be inhibited. If the PA reflected power increases to a point which may damage the RF circuitry of the transmitter, the controller will reduce the RF output to a safe level and the transmitter will continue to operate. Full power will be automatically re-established when the VSWR condition is corrected.

4-85. As an additional function, the controller will reduce the PA screen potential to minimum whenever the plate voltage is off. Whenever the plate voltage is energized, the controller will gradually increase the PA screen voltage until the rated transmitter RF output is established unless limited by low IPA drive, a high VSWR condition, or high screen current.

SECTION V
 MAINTENANCE

5-1. INTRODUCTION.

5-2. This section provides general maintenance information, electrical adjustment procedures, and troubleshooting information for the Broadcast Electronics FM-25T, FM-30T and FM-35T transmitters.

5-3. SAFETY CONSIDERATIONS.

NEVER OPEN THE EQUIPMENT UNLESS ALL TRANSMITTER PRIMARY POWER IS DISCONNECTED. USE THE GROUNDING STICK PROVIDED TO ENSURE ALL COMPONENTS AND ALL SURROUNDING COMPONENTS ARE DISCHARGED BEFORE ATTEMPTING MAINTENANCE ON ANY AREA WITHIN THE TRANSMITTER.

5-4. The FM-25T/FM-30T/FM-35T transmitters contain high voltages and currents which, if regarded carelessly, could be fatal. The transmitter has many built-in safety features, however good judgement, care, and common sense are the best accident preventives. The maintenance information contained in this section should be performed only by trained and experienced maintenance personnel.

5-5. It is extremely dangerous to attempt to make measurements or replace components with power energized, therefore such actions must not be performed. The design of the equipment provides safety features such that when a door is opened or an access panel is removed, interlock switches will deenergize all dc power supplies and release shorting switches to discharge the plate supply to ground. Do not bypass the interlock switches as a maintenance short-cut.

5-6. The PA cavity access door actuates an interlock switch if the door is opened during transmitter operation. All dc supplies will be deenergized and the plate supply will be shorted to ground.

5-7. Three grounding sticks are provided as safety features. One grounding stick is located in the power supply cabinet and two are located in the PA cabinet. Each grounding stick consists of a metal hook with an insulated handle. The metal end is connected to chassis ground. Use the grounding stick to touch every part in the area or circuit on which maintenance is to be performed before attempting maintenance.

5-8. The power supply cabinet grounding stick and the PA cabinet rear grounding stick rest on hook switches. When the grounding stick is removed, the associated hook switch will open the transmitter interlock string and deenergize all transmitter dc potentials until the grounding stick is replaced.

5-9. FIRST LEVEL MAINTENANCE.
WARNING
NEVER OPEN THE EQUIPMENT UNLESS ALL TRANSMITTER PRIMARY POWER IS DISCONNECTED.
WARNING

5-10. First level maintenance consists of procedures applied to the equipment to prevent future failures. The procedures are performed on a regular basis and the results recorded in a maintenance log. Preventive maintenance of the transmitter consists of good housekeeping, lubrication, and checking performance levels using the meters and various indicators built into the equipment.

5-11. MISCELLANEOUS.

44 WARNING
NEVER OPEN THE EQUIPMENT UNLESS ALL TRANSMITTER PRIMARY POWER IS DISCONNECTED. USE THE GROUNDING STICK PROVIDED TO ENSURE ALL COMPONENTS AND ALL SURROUNDING COMPONENTS ARE DISCHARGED BEFORE ATTEMPTING MAINTENANCE ON ANY AREA WITHIN THE TRANSMITTER.

5-12. On a regular basis, clean the equipment of accumulated dust. Check for overheated components, tighten loose hardware, and lubricate mechanical surfaces as required. A lubricant such as "Lubriplate" should be applied sparingly to the tuning drives, loading drives, cables, the PA tuning line right angle gear mechanism, and the cyclometer drives behind the PA cabinet front-panel. The PA output loading screw drive should be opened (four screws) and lubricated every 36 months, or more often if resistance is noted.

5-13. CONTROLLER BATTERY.

5-14. The transmitter controller is equipped with a Lithium battery. The battery has a useful life of approximately two years. After approximately two years of service, replace the controller battery using BEI part number 350-2032.

5-15. AIR FILTERS.

5-16. The FM-25T/FM-30T/FM-35T transmitters are equipped with two air filters. One filter is located in the driver cabinet rear door with the other located in the PA cabinet rear door. Air filter replacement is accomplished from outside the transmitter without interrupting equipment operation. Each filter should be checked once a week with replacement done on an as-required basis. A dirty filter could result in dust leaking into the cabinet from seams, door jambs, etc. Never reverse a dirty filter. Always replace the filter. The IPA unit also contains air filters which should be checked monthly and cleaned as necessary.

5-17. The transmitter uses disposable type air filters 1 inch X 16 inches X 20 inches (2.54 cm X 40.64 cm X 50.8 cm). Additional filters may be ordered for replacement (BE P/N 407-0062) or purchased locally. Always install the filter with the airflow arrow pointing towards the blower and flushing fans. The exciter and IPA unit also contain air filters. Refer to the exciter manual and the IPA section of this manual for air filter maintenance information.

BROADCAST ELECTRONICS INC

WARNING NEVER OPEN THE EQUIPMENT UNLESS ALL TRANSMITTER PRIMARY POWER IS DISCONNECTED. USE THE GROUNDING STICK PROVIDED TO ENSURE ALL COMPONENTS AND ALL SURROUNDING COMPONENTS ARE DISCHARGED BEFORE ATTEMPTING MAINTENANCE ON ANY AREA WITHIN THE TRANSMITTER.

5-19. Inspect the transmitter blower and flushing fans for dust accumulation and periodically clean the blower and flushing fans using a brush and vacuum cleaner. The blower and fan motors are cooled by air passing around each motor. If the ambient air temperature is too high or if the air flow is restricted, then the lubricant will gradually vaporize from the motor bearings and bearing failure will occur. If dirty air passes over the motors, accumulated dust will impair the motor cooling unless the accumulation is wiped from and blown out of the motor.
$5-20$. The blower and fan impeller blades should also be inspected and cleaned periodically. If the transmitter is operated in a very dusty environment, dust will build up on the concave side of the blower and fan impellers. If this happens, air flow will be reduced and unbalance will result with a possibility of damage to the blower or fans.
5-21. The blower motor is equipped with non-sealed element type bearings. Lubricate the front and rear motor bearings at regular intervals (refer to APPENDIX A for proper lubrication procedures). The flushing fans are equipped with sealed bearings which do not permit lubrication. If a flushing fan bearing fails, the motor must be replaced. Also, check the blower and fan mounting bolts at regular intervals.
5-22. SECOND LEVEL MAINTENANCE.
WARNING NEVER OPEN THE EQUIPMENT UNLESS ALL TRANSMITTER PRIMARY POWER IS DISCONNECTED.
WARNING

5-23. Second level maintenance consists of procedures required to restore the transmitter to operation after a fault has occurred. The maintenance philosophy of the FM-25T/FM-30T/ FM-35T transmitters consists of problem isolation to a specific area. Subsequent troubleshooting provided by each applicable assembly publication in Part II of this manual will assist isolation to a defective assembly or component. If desired, a defective assembly may be returned to the factory for repair or exchange.

5-24. GENERAL.
5-25. PA STAGE. Power amplifier tube life is a result of several circuit parameters. Usually, the first indication of the decline of a tube is a slight reduction in power output. This can normally be corrected by a small increase in filament voltage. It may be wise to order a new tube at this time. Further reductions in power output can be compensated in the same manner only a limited number of times. An Eimac application paper titled "Extending Transmitter Tube Life" is provided in APPENDIX A of this manual. Excess control grid or screen grid dissipation will shorten the life of a tube. Also, excess plate dissipation always produces trouble. Typical FM-25T/FM-30T/FM-35T PA efficiency is plotted in FIGURE 5-1, page 5-4, and should be referenced to estimate PA efficiency for a particular power level.

597-0096-26
FIGURE 5-1. FM-25T/FM-30T/FM-35T TYPICAL PA EFFICIENCY
5-26. PA Tube Warranty. The transmitter PA tube is covered by warranty from the Varian/ Eimac Company, the tube manufacturer, not Broadcast Electronics, Inc. However, a tube purchased from Broadcast Electronics which is defective must be returned to Broadcast Electronics with a customer-completed warranty claim service report. A warranty claim service report form is shipped with each tube obtained from Broadcast Electronics, Inc. Following this procedure, Broadcast Electronics will expedite immediate shipment of a new tube. Contact the Broadcast Electronics, Inc. Customer Service Department for additional details as required. It is recommended that the warranty report be filled out as soon as the new tube is placed in operation while the nominal voltages are known.

4 WARNING

BERYLLIUM OXIDE CERAMICS (BeO) - AVOID BREATHING DUST OR FUMES.

5-27. IPA UNIT. The transistors in the IPA unit will normally last many times longer than the power amplifier tube unless a major fault occurs. For further maintenance information, refer to the IPA publication in Part II of this manual.

WARNING
NEVER OPEN THE EQUIPMENT UNLESS ALL TRANSMITTER PRIMARY POWER IS DISCONNECTED. USE THE GROUNDING STICK PROVIDED TO ENSURE ALL COMPONENTS AND ALL SURROUNDING COMPONENTS ARE DISCHARGED BEFORE ATTEMPTING ANY MAINTENANCE.

5-29. Adjustment procedures for controls associated with the IPA unit, APC unit, and the transmitter controller are presented in each applicable publication in Part II of this manual. Adjustment procedures for power supply and PA controls are presented as follows:
A. AM Noise.
B. Control Grid Bias Level Adjustment.
C. Plate Current Meter Calibration.
D. Second Harmonic Suppressor Adjustment.
E. Neutralization.

5-30. AM NOISE. Each FM-25T, FM-30T and FM-35T transmitter is equipped with an AM NOISE test receptacle. The test receptacle is located on the controller and provides a calibrated AM waveform sample for direct measurement of synchronous and asynchronous AM noise parameters. Refer to the following text for procedures to minimize AM noise parameters in the transmitter.

5-31. Synchronous AM Noise. Synchronous AM noise is incidental amplitude modulation of the carrier by the presence of FM modulation. The synchronous AM noise level is related to: 1) the transmitter overall bandwidth and 2) transmitter tuning. An application paper titled "TECHNIQUES FOR MEASURING SYNCHRONOUS AM NOISE IN FM TRANSMITTERS" is available from Broadcast Electronics, Inc. The paper presents detailed information on AM noise measurements and procedures for tuning the transmitter to minimize the synchronous AM noise level. If adjustment of the transmitter is desired, perform the procedures in the application paper and tune the transmitter for a minimum synchronous AM noise level.

5-32. Asynchronous AM Noise. Asynchronous AM noise is residual amplitude modulation of the transmitter output due primarily to power supply ripple. The transmitter hum null circuit injects a small 60 Hz voltage into the screen power supply to cancel ac components in the power supply and reduce asynchronous AM noise. Adjustment of the circuit will not normally be required in the field. However, if it is certain that hum null circuit adjustment is required, proceed as follows.

5-33. Required Equipment. The following equipment is required to adjust the hum null circuit.
A. Distortion analyzer (Tektronics Model AA501 or equivalent).
B. One locally fabricated test cable consisting of the following:
A. 10 feet (3.05 m) of Belden RG58A/U coaxial cable (BE P/N 622-0050).
B. Two BNC connectors (Pomona UG68/U-BE P/N 417-0205).

NEVER OPEN THE EQUIPMENT UNLESS ALL TRANSMITTER PRIMARY POWER IS DISCONNECTED. USE THE GROUNDING STICK PROVIDED TO ENSURE ALL COMPONENTS AND ALL SURROUNDING COMPONENTS ARE DISCHARGED BEFORE ATTEMPTING ANY MAINTENANCE.

5-34. Procedure. To adjust the hum null circuit, proceed as follows:
5-35. Refer to Figure 5-2 and connect the distortion analyzer to the controller AM NOISE test receptacle using the coaxial test cable (Item B). Configure the distortion analyzer for dBm level indications.
5-36. Operate the transmitter at a normal output power level.
5-37. Refer to Figure 5-2 and adjust hum null control R216 for a minimum asynchronous AM noise indication on the distortion analyzer.

5-38. Disconnect and remove all test equipment.
5-39. CONTROL GRID BIAS LEVEL ADJUSTMENT. An adjustable resistor in the control grid bias circuit allows adjustment of the current in-rush. Adjustment of the control will not normally be required in the field. If it is certain that grid bias adjustment is required, contact the Broadcast Electronics Customer Service Department for a recommended test procedure and a list of required equipment.

COPYRIGHT © 2004 BROADCAST ELECTRONICS, INC

FIGURE 5-2. HUM NULL CONTROL LOCATION

5-40. PLATE CURRENT METER CALIBRATION. The plate current meter assembly is equipped with a calibration control. Due to the special equipment required to adjust the calibration control, the control is not considered field adjustable. If it is certain that adjustment of the plate current meter calibration control is required, contact the Broadcast Electronics Customer Service Department for maintenance information on the plate current meter assembly.

5-41. SECOND HARMONIC SUPPRESSOR. Adjustment of the second harmonic suppressor in the field will not normally be required, even if the PA tube is replaced. Adjustment should be attempted only when absolutely necessary. Misadjustment of the suppressor could result in sporadic operation, possibly damaging the PA tube, the cavity, or the lowpass filter. It is suggested the customer contact the Broadcast Electronics Customer Service Department before attempting this adjustment. If it is certain that adjustment of the second harmonic suppressor is required, proceed as follows.
5-42. Required Equipment. The following equipment is required to complete adjustment of the second harmonic suppressor.
A. 5/64 inch hex wrench.
B. Tektronix Model 492 Spectrum Analyzer or equivalent capable of displaying frequencies at twice the transmitter frequency of operation.
C. 50 Ohm 10 dB resistive attenuator pad, BNC jack to BNC plug (Texscan FP-50).
D. A test cable for the spectrum analyzer consisting of the following:

1. 10 feet (3.05 m) of Belden RG 58A/U coaxial cable (BE P/N 622-0050).
2. Two BNC plugs (Pomona UG88/U--BE P/N 417-0205).
E. Six inch scale, graduated in sixty-forths of an inch. MITTER PRIMARY POWER IS DISCONNECTED. USE
WARNING THE GROUNDING STICK PROVIDED TO ENSURE ALL COMPONENTS AND ALL SURROUNDING COMPONENTS ARE DISCHARGED BEFORE ATTEMPTING ANY MAINTENANCE.

5-43. Procedure. To adjust the second harmonic suppressor, proceed as follows:
WARNING DISCONNECT ALL TRANSMITTER PRIMARY POWER BEFORE PROCEEDING.
WARNING
5-44. Deenergize all primary power to the transmitter.
$5-45$. Connect one end of the spectrum analyzer cable (Item D) to the RF sample port on the transmission line elbow near the low-pass filter.
5-46. Connect the attenuator pad (Item C) in series with the cable and attach the attenuator pad to the spectrum analyzer input.

5-47. Energize the transmitter primary ac input.
5-48. Operate the transmitter at the normal power output and ensure all PA stage tuning and loading controls are correctly adjusted.

5-49. Record the level of the second harmonic displayed on the spectrum analyzer

WARNING
WARNING

DISCONNECT ALL TRANSMITTER PRIMARY POWER BEFORE PROCEEDING.

5-50. Disconnect all transmitter primary power.
5-51. Open the PA cabinet rear door.
5-52. Loosen the two hex-head lock-screws securing the second harmonic suppressor adjustment rod very slightly--just enough to allow in and out adjustment (see Figure 5-3).

COPYRIGHT © 2004 BROADCAST ELECTRONICS, INC
597-0096-28
FIGURE 5-3. SECOND HARMONIC SUPPRESSOR ADJUSTMENT

CAUTION CAUTION

THE SECOND HARMONIC SUPPRESSOR IS ADJUSTED BY SLIDING THE ADJUSTMENT ROD IN OR OUT. DO NOT ROTATE THE ROD.

NOTE
 NOTE

THE ORIGINAL HARMONIC SUPPRESSOR ADJUSTMENT DIMENSION IS RECORDED ON THE FACTORY FINAL TEST DATA SHEETS IF THE DIMENSION MUST BE REFERENCED.

5-53. Move the second harmonic suppressor adjustment rod slightly (approximately $1 / 16$ inch). Correct adjustment will be near the original factory position (see Figure 5-3). Record the amount moved and the direction (in or out) \qquad Slightly tighten the two screws to secure the rod in place.

5-54. Close the PA cabinet rear door.
5-55. Operate the transmitter at the normal power output and check for a minimum second harmonic indication displayed on the spectrum analyzer.

5-56. Repeat paragraphs 5-51 through 5-55, moving the second harmonic suppressor adjustment rod slightly in or out as required to minimize the second harmonic indication.

WARNING
DISCONNECT ALL TRANSMITTER PRIMARY POWER BEFORE PROCEEDING.
WARNING

5-57. After the correct placement of the second harmonic suppressor is determined, disconnect all transmitter primary power.

5-58. Open the PA cabinet rear door.
5-59. Secure the two hex-head lock-screws on the second harmonic suppressor bushing (see Figure 5-3).

5-60. Disconnect the spectrum analyzer cable from the transmission line.
5-61. Close the PA cabinet rear door. Refer to Figure 5-3 and record the new harmonic suppressor dimension \qquad .

5-62. NEUTRALIZATION. PA neutralization in the field will not normally be required, even if the PA tube is replaced. If it is certain that adjustment of the neutralization circuitry is required, proceed as follows.

CAUTION CAUTION

INCORRECT NEUTRALIZATION CAN RESULT IN IN-

 STABILITY WHICH COULD DAMAGE THE PA TUBE, CAVITY, OR LOW-PASS FILTER. CONSULT THE FACTORY BEFORE ATTEMPTING NEUTRALIZATION.5-63. Required Equipment. The following equipment is required to complete PA neutralization.
A. Spectrum analyzer (Tektronix Model 492 or equivalent).
B. 25 Watt, 50 Ohm RF attenuator/termination with -20 dB sample output, type N receptacles (Bird Model 8340-030 or equivalent).
C. Two locally fabricated cables, each consisting of the following:

1. 36 inches (91.44 cm) of Belden RG 58A/U coaxial cable (BE P/N 622-0050).
2. Two BNC plugs (Pomona UG88/U--BE P/N 417-0205).
D. One BNC receptacle to type N plug (Pomona UG201A/U--BE P/N 417-3288).
E. No. 2 Phillips screwdriver, 1-inch (2.54 cm) blade.
F. Flat-tip screwdriver, 8 -inch (20.32 cm) blade and $3 / 8$ inch (0.95 cm) tip.
G. Exciter line cord, (P/O FX-50 exciter accessory pack--BE P/N 682-0001).
H. Fuse, AGC, 3A slow-blow, 120V (P/O FX-50 exciter accessory pack--BE P/N 334-0300).
I. Electrical extension cord, 3 -wire, 12 feet (3.7 m) long
J. Six-inch scale, graduated in sixty-fourths of an inch.

WARNING NEVER OPEN THE EQUIPMENT UNLESS ALL TRANSMITTER PRIMARY POWER IS DISCONNECTED. USE
WARNING THE GROUNDING STICK PROVIDED TO ENSURE ALL COMPONENTS AND ALL SURROUNDING COMPONENTS ARE DISCHARGED BEFORE ATTEMPTING ANY MAINTENANCE.

5-64. Procedure. To adjust PA neutralization, proceed as follows:
5-65. Operate the transmitter at the normal power output and ensure all PA stage tuning and loading controls are correctly adjusted.
5-66. Secure the INPUT TUNING, OUTPUT LOADING, and OUTPUT TUNING control knobs in position with tape. The controls must not be moved until the entire procedure has been completed.

44 WARNING

DISCONNECT ALL TRANSMITTER PRIMARY POWER BEFORE PROCEEDING.

5-67. Deenergize all primary power to the transmitter.
5-68. Open the driver cabinet rear door.
5-69. Disconnect the coaxial cable from the exciter RF OUTPUT connector.
5-70. Connect a BNC-to-type N adapter on the RF attenuator/termination input connector.
5-71. Disconnect the coaxial cable from the PA RF input receptacle which is located on the RF enclosure bottom-panel near the blower inlet.
5-72. Connect one cable between the PA RF input receptacle and the RF termination -20 dB sample output.

5-73. Connect one cable between the exciter RF OUTPUT connector and the input to the RF termination.

5-74. For an FX-50 exciter, disconnect wire No. 245 from TB1-7 on the exciter rear-panel and connect a temporary wire jumper from TB1-6 to TB1-7. Flag the temporary jumper with a piece of tape marked "TEMPORARY". For an FXi 60, remove the plug from the connector J-3 on the exciter rear-panel and connect a temporary wire jumper from J3-6 to J3-14. Flag the temporary jumper with a piece of tape marked "TEMPORARY".

5-75. For an FX-50 exciter, disconnect the exciter line cord and remove the fuse from the AC LINE VOLTAGE SELECTOR on the rear-panel. Cover the line cord plug with a piece of tape marked " 240 VOLTS".

5-76. For an FX-50 exciter, remove the AC LINE VOLTAGE SELECTOR circuit board with a small pair of needle-nose pliers and record the circuit board voltage indication V . Reinsert the circuit board so that " $115 / 120 \mathrm{~V}$ " is visible when the circuit board is inserted into the receptacle.

5-77. For an FX-50 exciter, replace the fuse with a slow-blow type rated at 3 Amperes.
5-78. Connect the accessory exciter line cord to the extension cord. Route the extension cord out through the top or bottom of the driver cabinet to a 110 to 120 volt ac source.

5-79. Connect the accessory exciter line cord to the exciter.
5-80. Connect the spectrum analyzer to the RF sample port on the transmitter output transmission line. Adjust the analyzer to obtain a reference level display and position the analyzer so that it may be viewed from the front of the transmitter.

PRIMARY TRANSMITTER POWER MUST REMAIN OFF THROUGHOUT THE FOLLOWING PROCEDURE.
WARNING

5-81. Assure that the exciter is operating independently of the transmitter.
5-82. Open the PA cabinet front-panel door and observe the grounding stick.
USE THE GROUNDING STICK PROVIDED TO ENSURE NO PA TUBE POTENTIALS ARE PRESENT IN THE FOLLOWING STEP BY GROUNDING THE PA TUBE PLATE AND SCREEN CONNECTIONS BEFORE PROCEEDING.

5-83. Open the PA cavity access door and ground the PA tube plate and screen connections to ensure no potentials are present in the cavity before attempting to touch anything within the cavity.

5-84. After it has been determined that no PA tube potentials are present, mark the position of the eight neutralization adjustments (refer to Figure 5-4). Correct neutralization will be found near the original factory position (refer to Figure 5-4).

WARNING
WARNING
BE CAREFUL WHEN ADJUSTING THE NEUTRALIZATION STRAPS WITH FINGERS AS THE EDGES OF THE MATERIAL ARE VERY SHARP.

5-85. Loosen the four screws (Figure 5-4, detail A) on top of capacitors C7, C8, C17, and C18 slightly--just enough to allow adjustment of the inductors. When the neutralization procedure is properly performed, the height of all inductors will be approximately the same, within $1 / 16$ inch $(0.16 \mathrm{~cm})$.

COPYRIGHT © 2004 BROADCAST ELECTRONICS, INC

597-0220-29

FIGURE 5-4. COARSE NEUTRALIZATION ADJUSTMENTS
5-86. Neutralization is adjusted in the following manner:
A. Remove all foreign objects from the cavity and close the cavity access door.
B. Note the spectrum analyzer indication.
C. Open the cavity access door and adjust one inductor slightly by moving the inductor in or out of the capacitor. Lightly secure the four screws on the capacitor plate.
D. Remove all foreign objects from the cavity and close the cavity access door.
E. Note the change in the spectrum analyzer indication.
F. Repeat steps A through E until a minimum spectrum analyzer indication is noted.
G. Repeat steps A through F for the remaining inductors to minimize the spectrum analyzer indication.
H. Secure the screws in each capacitor. When the neutralization procedure is properly performed, the height of all inductors will be approximately equal.
I. Ensure all four capacitors are secure before closing the cavity access door.

5-87. Close and latch the cavity access door. Replace the grounding stick on the hanger.
5-88. Disconnect the spectrum analyzer from the transmission line RF sample output.

CAUTION
 CAUTION

DO NOT CONNECT THE EXCITER TO THE LINE CORD WIRED INTO THE TRANSMITTER IN THE FOLLOWING STEP.

WARNING

DISCONNECT ALL EXCITER PRIMARY POWER BEFORE PROCEEDING.

5-89. Remove the electrical extension cord and exciter line cord. Do not connect the exciter to the line cord wired into the transmitter at this time.

5-90. For an FX-50 exciter, remove the fuse from the exciter rear panel AC LINE VOLTAGE SELECTOR.

5-91. For an FX-50 exciter, remove the AC LINE VOLTAGE SELECTOR circuit board with a small pair of needle-nose pliers. Reinsert the circuit board so that the recorded voltage is visible when the circuit board is inserted into the receptacle.

5-92. For an FX-50 exciter, replace the fuse with a slow-blow type rated at 1.5 Amperes.
5-93. Remove the tape from the exciter line cord and connect the plug to the exciter.
5-94. For an FX-50 exciter, remove the temporary wire jumper from TB1 on the exciter rear panel and reconnect wire No. 245 to TB1-7. For an FXi 60 exciter, remove the temporary wire jumper from J3 on the exciter rear panel and reconnect the plug to J3 connector.

5-95. Remove the cabling and RF attenuator/termination connected between the exciter $\mathbf{R F}$ OUTPUT connector and the PA RF input receptacle.

5-96. Reconnect the cabling from the exciter RF OUTPUT receptacle to the IPA input receptacle and the IPA output receptacle to the PA RF input receptacle.

5-97. TRANSMITTER POWER LEVEL CHANGE.

WARNING NEVER OPEN THE EQUIPMENT UNLESS ALL TRANSMITTER PRIMARY POWER IS DISCONNECTED. USE THE GROUNDING STICK PROVIDED TO ENSURE ALL COMPONENTS AND ALL SURROUNDING COMPONENTS ARE DISCHARGED BEFORE ATTEMPTING ANY MAINTENANCE.

5-98. Each transmitter is programmed, operated, and tested at a specific power level at the factory prior to shipment. If at a future date the transmitter is to be operated at a power level other than the original factory programmed level, the following transmitter parameters must be checked and adjusted if required to assure proper transmitter operation. If problems occur during initial operation, contact the Broadcast Electronics Customer Service Department for additional service procedures.

5-99. PROCEDURE. To change the transmitter power output level, proceed as follows: EVER OPEN THE EQUIPMENT UNLESS ALL TRANSMITTER PRIMARY POWER IS DISCONNECTED. USE THE GROUNDING STICK PROVIDED TO ENSURE ALL COMPONENTS AND ALL SURROUNDING COMPO-

WARNING

DISCONNECT ALL TRANSMITTER PRIMARY POWER BEFORE PROCEEDING.

5-100. Disconnect all transmitter primary power.
$5-101$. Open the power amplifier cabinet front door and ground all plate supply potentials. Ensure no potentials exist before proceeding.

WARNING
WARNING
USE THE GROUNDING STICK PROVIDED TO ENSURE NO PA TUBE POTENTIALS ARE PRESENT BY GROUNDING ALL PA TUBE POTENTIALS.

WARNING ENSURE NO POTENTIALS EXIST BEFORE PROCEEDING.

5-102. Refer to Figure 5-5 and remove the PA cavity lower access panel. Use the grounding stick to ground all PA tube potentials and to ensure no potentials are present within the cavity or PA input circuit. Ensure no potentials exist before proceeding.

5-103. Refer to Figure 5-5 and check the PA matching circuit board programming. Install components as required by the new power level.

5-104. Refer to SECTION II, INSTALLATION and check the plate transformer secondary taps.
5-105. Refer to SECTION III, OPERATION and reset the APC operating reference.
5-106. Energize the transmitter primary ac power and operate the transmitter. Adjust the input tuning control for a minimum IPA reflected power indication on the multimeter (for high reflected power conditions, use the multimeter grid current function and maximum grid current information for indications of correct tuning operations.) If input matching problems persist during initial operation, contact the Broadcast Electronics Customer Service Department for adjustment information.

5-107. Refer to CONTROLLER SECTION III, MAINTENANCE and perform the FORWARD POWER CALIBRATION and REFLECTED POWER CALIBRATION adjustment procedures.

COPYRIGHT © 2004 BROADCAST ELECTRONICS, INC
FIGURE 5-5. COMPONENT PROGRAMMING FOR POWER LEVEL CHANGES

5-108. TRANSMITTER FREQUENCY CHANGE PROCEDURE.
CAUTION
CAUTION

CONSULT THE FACTORY BEFORE ATTEMPTING TO CHANGE THE TRANSMITTER OPERATING FREQUENCY.

5-109. GENERAL. The following text presents an overall procedure to change the transmitter operating frequency. The procedure specifies operational adjustment procedures located throughout this publication, FX-50 Exciter publication 597-1050, and FXi 60 Exciter publication 597-0541. To change the transmitter operating frequency, proceed as follows.

5-110. Procedure. To change the transmitter operating frequency, proceed as follows:

NEVER OPEN THE EQUIPMENT UNLESS ALL TRANSMITTER PRIMARY POWER IS DISCONNECTED. USE THE GROUNDING STICK PROVIDED TO ENSURE ALL COMPONENTS AND ALL SURROUNDING COMPONENTS ARE DISCHARGED BEFORE ATTEMPTING ANY MAINTENANCE.

出
 WARNING

DISCONNECT ALL TRANSMITTER PRIMARY POWER BEFORE PROCEEDING.

5-111. Disconnect all transmitter primary power. The primary ac power must remain OFF unless specified by an adjustment procedure.

USE THE GROUNDING STICK PROVIDED TO ENSURE NO POTENTIALS ARE PRESENT BY GROUNDING ALL
WARNING POTENTIALS.

WARNING

WARNING

5-112. Open the cavity access door and ground all PA tube potentials to ensure no potentials are present within the cavity or PA input circuit. Open the power supply cabinet door and ground all potentials to ensure no potentials are present within the cabinet. Ensure no potentials exist before proceeding.

5-113. Refer to Figure 5-6A and adjust the transmitter coarse output tuning by raising or lowering the PA tuning line on top of the PA cavity. Refer to Figure 5-6B and coarse adjust the transmitter front and side input tuning controls. The front input tuning control is adjusted by rotating the control for the specified cyclometer indication. The side tuning control is adjusted by rotating the control fully clockwise and then adjusting the control counterclockwise for a specified number of turns. The coarse input tuning control is accessed from the power supply cabinet.

5-114. Refer to the following text and program the FM-25T, FM-30T and FM-35T frequency dependent parts.
broadcast ELECTRONICS INC

FIGURE 5-6. FM-25T/FM-30T/FM-35T COARSE TUNING ADJUSTMENTS
A. Check second harmonic suppressor inductor L6. Replace the inductor as required by the new operating frequency.

FREQUENCY

88 MHz to 99 MHz
99 MHz to 108 MHz

DESCRIPTION

10.62 inch (27 cm) inductor
6.36 inch (16.15 cm) inductor

PART NO.

479-0054-001
479-0053-001
B. Refer to Figure 5-7 and check the programming for: 1) shorting block L19 and 2) the tube socket mounting standoffs. Replace/move components as required by the new operating frequency.

FM-35T TRANSMITTER

A. Refer to Figure 5-8 and check components in the RF enclosure. Replace or change the components as required by the new operating frequency.
B. Refer to Figure 5-7 and check the programming for: 1) shorting block L19 and 2) the tube socket mounting standoffs. Replace/move components as required by the new operating frequency.

5-115. Refer to Figure 5-3 and coarse adjust the transmitter second harmonic suppressor. The suppressor is adjusted by loosening the two hex-head lock screws and moving the adjustment rod in or out as required. Do not rotate rod during adjustment.

5-116. Refer to Figure 5-4 and coarse adjust the transmitter neutralization as follows:
A. Coarse adjust the neutralization inductors. The inductors are adjusted by loosening the screws on top of the capacitors and moving the inductors in or out of the capacitors as required. All inductors must be the same height.
B. Coarse adjust inductors L7, L8, L17, and L18. Adjust the inductors in or out as required.

5-117. For a transmitter equipped with an FX-50, refer to FX-50 Exciter publication 597-1050, PART II SECTION 4, AFC/PLL ASSEMBLY and perform the FREQUENCY SELECTION procedure. For a transmitter equipped with an FXi 60, refer to SECTION III, OPERATION in FXi 60 publication 597-0541 and perform the CARRIER FREQUENCY PROGRAMMING procedure. Operate and test the exciter independently from the transmitter.

5-118. Refer to SECTION II, INSTALLATION and perform the PRELIMINARY OPERATION AND TUNING procedure to obtain a 10% power indication from the transmitter. Use a spectrum analyzer to monitor spurious activity during tuning. Also, use an in-line wattmeter connected to the transmitter output transmission line for all power output indications.

5-119. Refer to the adjustment procedures in the preceding text and perform the NEUTRALIZATION procedure.

5-120. Refer to SECTION II, INSTALLATION and complete the PRELIMINARY OPERATION AND TUNING procedure to obtain a 100% power indication from the transmitter.

5-121. Refer to the adjustment procedures in the preceding text and perform the SECOND HARMONIC SUPPRESSOR adjustment procedure.
5-122. Refer to CONTROLLER SECTION II, MAINTENANCE and perform the FORWARD POWER CALIBRATION and REFLECTED POWER CALIBRATION adjustment procedures.
broadcast ELECTRONICS INC

2) tuee sacket mainting stanaiff pragramming

COPYRIGHT © 2004 BROADCAST ELECTRONICS, INC

FIGURE 5-7. COMPONENT PROGRAMMING FOR FREQUENCY CHANGES
597-0096-131

597-0096-129
FIGURE 5-8. FM-35T FREQUENCY PROGRAMMING

5-123. TROUBLESHOOTING.
WARNING NEVER OPEN THE EQUIPMENT UNLESS ALL TRANSMITTER PRIMARY POWER IS DISCONNECTED. USE
WARNING THE GROUNDING STICK PROVIDED TO ENSURE ALL COMPONENTS AND ALL SURROUNDING COMPONENTS ARE DISCHARGED BEFORE ATTEMPTING ANY MAINTENANCE ON ANY AREA WITHIN THE TRANSMITTER.

5-124. Most transmitter troubleshooting consists of visual checks. Due to the dangerous voltages and currents in the equipment, it is considered extremely dangerous to work with power energized. Therefore, the various transmitter indicators (meters, LEDs, fuses, and circuit breakers) should be used to isolate the malfunction to one of the specific areas listed below. Typical meter indications for the FM-25T, FM-30T and FM-35T transmitters are presented in TABLE $5-1$ and TABLE $5-2$, page $5-22$, and TABLE $5-3$, page $5-23$. Transmitter primary power demand requirements are listed in TABLE 5-4, TABLE 5-5, and TABLE 5-6, page 5-23.

TRANSMITTER TROUBLESHOOTING AREAS

A. Power Supplies
B. Exciter
C. IPA Stage
D. Power Amplifier
E. Transmitter Controller
F. Transmitter Load

TABLE 5-1. FM-25T TYPICAL METER INDICATIONS, 25 kW POWER OUTPUT

METER	INDICATION
OUTPUT POWER:	
FORWARD	100%
VSWR	$1.0: 1$
PLATE CURRENT	3.6 A
PLATE VOLTAGE	9100 V
SCREEN VOLTAGE	400 V
REFLECTED POWER	NORMAL
SCREEN CURRENT	200 mA
GRID VOLTAGE	-260 V
GRID CURRENT	80 mA
FILAMENT VOLTAGE	10.0 V
IPA:	300 W

TABLE 5-2. FM-30T TYPICAL METER INDICATIONS, 30 kW POWER OUTPUT

METER	INDICATION

OUTPUT POWER:	
\quad FORWARD	100%
VSWR	$1.0: 1$
PLATE CURRENT	4.1 A
PLATE VOLTAGE	9500 V
SCREEN VOLTAGE	500 V
REFLECTED POWER	NORMAL
SCREEN CURRENT	240 mA
GRID VOLTAGE	-260 V
GRID CURRENT	85 mA
FILAMENT VOLTAGE	10.0 V
IPA:	
FORWARD POWER	360 W

TABLE 5-3. FM-35T TYPICAL METER INDICATIONS, 35 kW RF POWER OUTPUT

METER	INDICATION
OUTPUT POWER:	
FORWARD	100%
VSWR	$1.0: 1$
PLATE CURRENT	4.5 A
PLATE VOLTAGE	$10,500 \mathrm{~V}$
SCREEN VOLTAGE	730 V
SCREEN CURRENT	230 mA
GRID VOLTAGE	-260 V
GRID CURRENT	40 mA
FILAMENT VOLTAGE	10.0 V
IPA:	380 W
FORWARD POWER	NORMAL

TABLE 5-4. FM-25T TYPICAL POWER DEMAND, 25 kW POWER OUTPUT

AC LINE FREQUENCY

60 Hz	210 V
50 Hz	220 V
50 Hz	380 V

380 V

AC LINE CURRENT
AC LINE VOLTAGE

115 A PER PHASE 110 A PER PHASE 65 A PER PHASE

TABLE 5-5. FM-30T TYPICAL POWER DEMAND, 30 kW POWER OUTPUT
AC LINE FREQUENCY AC LINE VOLTAGE AC LINE CURRENT

60 Hz	210 V	130 A PER PHASE
50 Hz	220 V	130 A PER PHASE
50 Hz	380 V	75 A PER PHASE

TABLE 5-6. FM-35T TYPICAL POWER DEMAND, 35 kW POWER OUTPUT
AC LINE FREQUENCY AC LINE VOLTAGE AC LINE CURRENT

60 Hz	210 V	150 A PER PHASE
50 Hz	220 V	150 A PER PHASE
50 Hz	380 V	84 A PER PHASE

MANY COMPONENTS IN THE TRANSMITTER ARE MOUNTED TO HEAT SINKS UTILIZING A FILM OF HEAT-SINK COMPOUND FOR THERMAL CONDUCTION.

CAUTION
IF ANY SUCH COMPONENT IS REPLACED, ENSURE A THIN FILM OF A ZINC-BASED HEAT-SINK COMCAUTION POUND IS USED (BE P/N 700-0028) TO ASSURE GOOD HEAT DISSIPATION.
$5-125$. Once the trouble is isolated, refer to the applicable assembly of this manual which presents the theory of operation and troubleshooting for the respective assembly to assist in problem resolution. Figures 5-9 through 5-13 provide drawings to assist component location.

5-126. COMPONENT REPLACEMENT ON CIRCUIT BOARDS. Component replacement on printed circuit boards requires extreme care to avoid damage to the board traces.

5-127. On all circuit boards, the adhesive securing the copper trace to the board melts at almost the same temperature at which solder melts. A circuit board trace can be destroyed by excessive heat or lateral movement during soldering. Use of a small iron with steady pressure is required for circuit board repairs.

5-128. To remove a component from a circuit board, cut the leads from the body of the defective component while the device is still soldered to the board.

5-129. Grip each component lead, one at a time, with long nose pliers. Turn the board over and touch a soldering iron to the lead at the solder connection. When the solder begins to melt, push the lead through the back side of the board and cut off the bent-over outer end of the lead. Each lead may now be heated independently and pulled out of each hole. The holes may be cleared of solder by carefully re-heating with a low wattage iron and removing the residual solder with a soldering vacuum tool.

5-130. Install the new component and apply solder from the bottom side of the board.
MOST SOLVENTS WHICH WILL REMOVE ROSIN FLUX ARE VOLATILE AND TOXIC BY THEIR NATURE AND SHOULD BE USED ONLY IN SMALL AMOUNTS IN A WELL VENTILATED AREA, AWAY FROM FLAME, INCLUDING CIGARETTES AND A HOT SOLDERING IRON.

WARNING
OBSERVE THE MANUFACTURER'S CAUTIONARY INSTRUCTIONS.

5-131. After soldering, remove flux with a cotton swab moistened with a suitable solvent. Rubbing alcohol is highly diluted and is not effective.

5-132. The board should be checked to ensure the flux has been removed and not just smeared. Rosin flux is not normally corrosive, but rosin will absorb enough moisture in time to become conductive and cause problems.
broadcast ELECTRONICS INC

FiIGURE 5-9. FM-30T/FM-35T POWER SUPPLY CABINET COMPONENT LOCATOR (Sheet 2 of 2)

597-0096-31A

FIGURE 5-10. FM-25T PA CABINET COMPONENT LOCATOR (Sheet 1 of 2)

597-0096-31

FIGURE 5-10. FM-30T/FM-35T PA CABINET COMPONENT LOCATOR (Sheet 2 of 2)

COPYRIGHT © 2004 BROADCAST ELECTRONICS, INC
597-0096-32

FIGURE 5-11. RF ENCLOSURE COMPONENT LOCATOR

597-0096-132A
FIGURE 5-12. PA INPUT CIRCUIT COMPONENT LOCATOR (Sheet 1 of 2)

COPYRIGHT © 2004 BROADCAST ELECTRONICS, INC
597-0096-132B
FIGURE 5-12. PA INPUT CIRCUIT COMPONENT LOCATOR (Sheet 2 of 2)

COPYRIGHT © 2004 BROADCAST ELECTRONICS, INC

FIGURE 5-13. FM-25T/FM-30T/FM-35T DRIVER CABINET COMPONENT LOCATOR

SECTION VI PARTS LIST

6-1. INTRODUCTION.

6-2. This section provides descriptions and part numbers of electrical components, assemblies, and selected mechanical parts required for maintenance of the Broadcast Electronics FM-25T, FM-30T and FM-35T Transmitters. Each table entry in this section is indexed by reference designators appearing on the applicable schematic diagram.

TABLE 6-1. FM-25T/FM-30T/FM-35T PARTS LIST INDEX (Sheet 1 of 2)

TABLE	DESCRIPTION	PART NO.	PAGE
6-2	FM-25T TRANSMITTER $60 \mathrm{HZ} / 50 \mathrm{HZ}$	$\begin{array}{r} 909-0025-200 / \\ -380 \end{array}$	6-3
6-3	FM-30T TRANSMITTER $60 \mathrm{HZ} / 50 \mathrm{HZ}$	$\begin{array}{r} 909-0000-205 \\ -385 \end{array}$	6-3
6-4	FM-35T TRANSMITTER $60 \mathrm{HZ} / 50 \mathrm{HZ}$	$\begin{gathered} 909-0035-205 / \\ -385 \end{gathered}$	6-3
6-5	POWER SUPPLY CABINET ASSEMBLIES, FM-25T $60 \mathrm{HZ} / 50 \mathrm{HZ}$	959-0265-125	6-4
6-6	POWER SUPPLY CABINET ASSEMBLIES, FM-30T $60 \mathrm{HZ} /$ FM-30T 50 HZ	959-0265-100	6-4
6-7	POWER SUPPLY CABINET ASSEMBLIES, FM-35T 60 HZ/ FM-35T 50 HZ	959-0265-135	6-5
6-8	GROUND STICK HANGER ASSEMBLY	955-0038	6-5
6-9	POWER SUPPLY BLEEDER PANEL	959-0265-001	6-5
6-10	POWER SUPPLY CONTACTOR PANEL	959-0265-002	6-6
6-11	OPTICALLY-COUPLED-RELAY (OCR) ASSEMBLY	919-0096	6-6
6-12	POWER SUPPLY CABINET CABLE ASSEMBLY	949-0168	6-6
6-13	POWER SUPPLY RECTIFIER PANEL ASSEMBLY	959-0265-005	6-7
6-14	POWER AMPLIFIER CABINET ASSEMBLY, FM-25T 60 HZ	959-0267-125	6-7
6-15	POWER AMPLIFIER CABINET ASSEMBLY, FM-25T 50 HZ	959-0268-125	6-8
6-16	POWER AMPLIFIER CABINET ASSEMBLY, FM-30T 60 HZ	959-0267-100	6-8
6-17	POWER AMPLIFIER CABINET ASSEMBLY, FM-30T 50 HZ	959-0268-100	6-9
6-18	POWER AMPLIFIER CABINET ASSEMBLY, FM-35T 60 HZ	959-0267-135	6-9
6-19	POWER AMPLIFIER CABINET ASSEMBLY, FM-35T 50 HZ	959-0268-135	6-10
6-20	POWER AMPLIFIER METERING CIRCUIT BOARD ASSEMBLY	919-0148	6-10
6-21	POWER AMPLIFIER CURRENT METER SHUNT CIRCUIT BOARD ASSEMBLY	919-0048-011	6-12
6-22	POWER AMPLIFIER CABINET CABLE ASSEMBLY	949-0167-100	6-12
6-23	RF ENCLOSURE ASSEMBLY, FM-30T	959-0246-100	6-12
6-24	RF ENCLOSURE ASSEMBLY, FM-35T	959-0246-110	6-13

TABLE 6-1. FM-25T/FM-30T/FM-35T PARTS LIST INDEX
(Sheet 2 of 2)

TABLE	DESCRIPTION	PART NO.	PAGE
$6-25$	METER MULTIPLIER CIRCUIT BOARD ASSEMBLY,	$919-0079$	$6-13$
	FM-30T		
$6-26$	METER MULTIPLIER CIRCUIT BOARD ASSEMBLY,	$919-0097$	$6-14$
	FM-35T		
$6-27$	CHIMNEY ASSEMBLY, FM-30T	$959-0246-008$	$6-14$
	CHIMNEY ASSEMBLY, FM-35T	$959-0246-009$	
$6-28$	RF ENCLOSURE TOP ASSEMBLY, FM-30T	$959-0246-104$	$6-14$
	RF ENCLOSURE TOP ASSEMBLY, FM-35T	$959-0246-105$	
$6-29$	EXHAUST AIR TEMPERATURE CIRCUIT BOARD	$919-0082$	$6-14$
	ASSEMBLY		
$6-30$	PA SCREEN \& BIAS PANEL ASSEMBLY	$959-0267-001$	$6-15$
$6-31$	PA HUM NULL PANEL ASSEMBLY	$959-0267-002$	$6-15$
$6-32$	POWER STAT PANEL ASSEMBLY	$959-0267-103$	$6-15$
$6-33$	PA METER PANEL ASSEMBLY, FM-30T	$959-0267-105 /$	$6-16$
	PA METER PANEL ASSEMBLY, FM-35T	$959-0267-108$	
$6-34$	MULTIMETER CIRCUIT BOARD ASSEMBLY	$919-0049$	$6-16$
$6-35$	METER ASSEMBLY, PLATE CURRENT	$959-0293$	$6-17$
$6-36$	METER PROTECTION CIRCUIT BOARD ASSEMBLY	$919-0109-002$	$6-17$
$6-37$	TUBE SOCKET ASSEMBLY	$959-0301$	$6-17$
$6-38$	INPUT MATCHING CIRCUIT BOARD ASSEMBLY	$919-0064-002$	$6-18$
$6-39$	DRIVER CABINET ASSEMBLY	$959-0297-100$	$6-18$
$6-40$	DRIVER CABINET WIRING HARNESS ASSEMBLY	$949-0142-100$	$6-18$
$6-41$	AC DISTRIBUTION PANEL ASSEMBLY	$959-0297-002$	$6-18$
$6-42$	DRIVER FAN ASSEMBLY	$959-0297-005$	$6-18$
$6-43$	REMOTE INTERFACE PANEL ASSEMBLY	$959-0297-103$	$6-19$
$6-44$	REMOTE INTERFACE CIRCUIT BOARD ASSEMBLY	$919-0439$	$6-19$
$6-45$	LOW-PASS FILTER ASSEMBLY	$339-0022$	$6-19$
$6-46$	OUTPUT DIRECTIONAL COUPLER ASSEMBLY	$959-0082-050$	$6-19$
$6-47$	ACCESSORY PARTS KIT	$969-0016$	$6-19$
$6-48$	TUNING LINE ASSEMBLY, FM-30T	$959-0246-003$	$6-19$
$6-49$	TUNING LINE ASSEMBLY, FM-35T	$959-0246-006$	$6-20$

TABLE 6-2. FM-25T TRANSMITTER - 909-0025-200/-380

REF. DES.	DESCRIPTION	PART NO.	QTY.		
V1	PA Tube, 4CX20000A/8990	$243-0001$			
----	Filter, Low Pass, 45 kW	$339-0022$	1		
----	Transmission Line Insulator-Connector Assembly	$427-0004$	1		
----	FX-50, Exciter, 220V ac	$909-1050-325$	1		
----	Power Supply Cabinet Assembly, FM-25T	$959-0265-125$	1		
----	Power Amplifier Cabinet Assembly, FM-25T	$959-0267-125$	1		
----	Driver Cabinet Assembly, FM-20T	$959-0297-100$	1		
---	Accessory Parts Kit, FM-30T/FM-35T	$969-0016$	1		
			$959-0268-125$	$] 1$	1
:---					

TABLE 6-3. FM-30T TRANSMITTER - 909-0000-205/-385

REF. DES.	DESCRIPTION	PART NO.	QTY.
V1	PA Tube, 4CX20000A/8990	$243-0001$	
----	Filter, Low Pass, 45 kW	$339-0022$	1
---	Transmission Line Insulator-Connector Assembly	$427-0004$	1
---	FX-50, Exciter, 220V ac	$909-1050-325$	1
---	Power Supply Cabinet Assembly, FM-30T	$959-0265-100$	1
---	Power Amplifier Cabinet Assembly, FM-30T	$959-0267-100$	1
---	Driver Cabinet Assembly, FM-20T	$959-0297-100$	1
---	Accessory Parts Kit, FM-30T/FM-35T	$969-0016$	1
			$959-0266-100$
	Power Supply Cabinet Assembly, FM-30T, 380V/50 Hz	1	
----	Power Amplifier Cabinet Assembly, FM-30T, 380V/50 Hz	$959-0268-100$	1

TABLE 6-4. FM-35T TRANSMITTER - 909-0035-205/-385

REF. DES.	DESCRIPTION	PART NO.	QTY.
V1	PA Tube, 4CX20000C	240-2000	1
	Filter, Low Pass, 45 kW	339-0022	1
	Transmission Line Insulator-Connector Assembly	427-0004	1
	FX-50, Exciter, 220V ac	909-1050-325	1
	Power Supply Cabinet Assembly, FM-35T	959-0265-135	1
	Power Amplifier Cabinet Assembly, FM-35T	959-0267-135	1
	Driver Cabinet Assembly, FM-20T	959-0297-100	1
	Accessory Parts Kit, FM-30T/FM-35T	969-0016	1
	- FOR 50 HZ TRANSMITTER, MODELS 909		
	Power Supply Cabinet Assembly, FM-35T, 380V/50 Hz	959-0266-135	1
	Power Amplifier Cabinet Assembly, FM-35T, $380 \mathrm{~V} / 50 \mathrm{~Hz}$	959-0268-135	1

TABLE 6-5. POWER SUPPLY CABINET ASSEMBLIES, FM-25T $60 \mathrm{~Hz} / \mathrm{FM}-25 T 50 \mathrm{~Hz}$ -959-0265-125

REF. DES.	DESCRIPTION	PART NO.	QTY.
C300	Capacitor, Plastic, 4 uF, 15 kV dc	$030-0001$	
CB300	Circuit Breaker, 3-Pole, 600 Volt ac, 175 Amperes	$341-0080$	1
CB301	Circuit Breaker, 3-Pole, 480 Volt ac, 30 Amperes	$341-0079$	1
K300	Contactor, 140 Amp, 3-Pole, 208/220VAC	$341-0081$	1
L300	Choke, Power, 4.0 H @ 5 Amperes dc	$360-0033-001$	1
S301	Interlock Switch, SPDT, 15A @ 125V ac, 0.5A @ 125V dc,	$346-3302$	1
T300	0.25A @ 250V dc		1
	Transformer, Plate Supply	$370-0014-001$	1
	\quad Primary: Three-Phase, 196V to 252V or 342V to 437V ac,		
	Delta Configuration		
----	Secondary: Three-Phase, 6923V ac @ 4.08A, Wye Configuration		
----	Switchlet, Interlock, 49L100103, Left Side, Kit	$340-0105$	1
----	Air Filter, 16 X 20 X 1 Inch (40.64 X 50.8 X 2.54 cm)	$407-0062$	1
-----	PA-PS With Power Supply Remote, FM-30T Cable Assembly	$949-0170$	1
----	Ground Switch Assembly	$955-0030-001$	1
----	Ground Stick Assembly	$955-0032$	1
----	Ground Stick Hanger Assembly	$955-0038$	1
----	FM-30T Power Supply Bleeder Panel	$959-0265-001$	1
	FM-30T Power Supply Contactor Panel	$959-0265-002$	1
	FM-30T Power Supply Rectifier Panel	$959-0265-005$	1

TABLE 6-6. POWER SUPPLY CABINET ASSEMBLIES, FM-30T $60 \mathrm{~Hz} / \mathrm{FM}-30 \mathrm{~T} 50 \mathrm{~Hz}$ -959-0265-100

REF. DES.	DESCRIPTION	PART NO.	QTY.
C300	Capacitor, Plastic, $4 \mathrm{uF}, 15 \mathrm{kV}$ dc	030-0001	1
CB300	Circuit Breaker, 3-Pole, 600 Volt ac, 200 Amperes	341-0001-1	1
CB301	Circuit Breaker, 3-Pole, 480 Volt ac, 15 Amperes	341-0040	2
K300	Contactor, 210 Amp, 3-Pole, 42JB35AAD8	341-0048	1
L300	Choke, Power, 4.0 H @ 5 Amperes dc	360-0033-001	1
S301	Interlock Switch, SPDT, 15A @ 125V ac, 0.5A @ 125V dc, 0.25A @ 250V dc	346-3302	1
T300	Transformer, Plate Supply Primary: Three-Phase, 196 V to 252 V or 342 V to 437 V ac, Delta Configuration Secondary: Three-Phase, 6923V ac @ 4.08A, Wye Configuration	370-0014-001	1
----	Switchlet, Interlock, 49L100103, Left Side, Kit	340-0105	1
----	Air Filter, 16 X 20 X 1 Inch (40.64 X 50.8 X 2.54 cm)	407-0062	1
----	PA-PS With Power Supply Remote, FM-30T Cable Assembly	949-0170	1
----	Ground Switch Assembly	955-0030-001	1
----	Ground Stick Assembly	955-0032	1
----	Ground Stick Hanger Assembly	955-0038	1
----	FM-30T Power Supply Bleeder Panel	959-0265-001	1
----	FM-30T Power Supply Contactor Panel	959-0265-002	1
----	FM-30T Power Supply Rectifier Panel	959-0265-005	1

TABLE 6-7. POWER SUPPLY CABINET ASSEMBLIES, FM-35T $60 \mathrm{~Hz} / \mathbf{F M}-35 T 50 \mathrm{~Hz}$ -959-0265-135

REF. DES.	DESCRIPTION	PART NO.	QTY.
--	Power Supply Cabinet Assembly, FM-30T \qquad FOR 959-0265-135 ASSEMBLY	959-0265-100	1
CB300	Circuit Breaker, 3-Pole, 500 Volt ac, 225 Amperes	341-0046	1
K300	Contactor, High Voltage Start, FM-35T	341-0056	1
T300	Transformer, Plate Supply Primary: Three-Phase, 196 V to 252 V Delta Configuration or 330 to 437 Volts Wye Configuration Secondary: Three-Phase, 8930V ac @ 4.08A, Wye Configuration	370-0044-001	1
CB300	Circuit Breaker, 3-Pole, 600 Volt ac, 200 Amperes	341-0001-1	1
K300	Contactor, 210 Amps, 3-Pole, 42JB35AAD8	341-0048	1
T300	Transformer, Plate Supply Primary: Three-Phase, 196 V to 252 V or 342 V to 437 V ac, Delta Configuration Secondary: Three-Phase, 6923V ac @ 4.08A, Wye Configuration	370-0014-001	1

TABLE 6-8. GROUND STICK HANGER ASSEMBLY - 955-0038

REF. DES.	DESCRIPTION	PART NO.	QTY.
S302	Microswitch, SPDT, $11 \mathrm{~A} @ 125 \mathrm{~V}$ or $250 \mathrm{~V} \mathrm{ac}, 0.5 \mathrm{~A} @ 125 \mathrm{~V}$ dc, $0.25 \mathrm{~A} @ 250 \mathrm{~V} \mathrm{dc}$	$346-6100$	1

TABLE 6-9. POWER SUPPLY BLEEDER PANEL - 959-0265-001

REF. DES.	DESCRIPTION	PART NO.	QTY.
R301 thru	Resistor, 75 k Ohm, $225 \mathrm{~W}, \pm 5 \%$, WW (Bleeder)	$132-7553$	4
R304	Resistor, 22 Ohm $\pm 20 \%, 150 \mathrm{~W}$, Non-Inductive		
R307	Resistor, 5 Ohm $\pm 10 \%, 275 \mathrm{~W}$	$139-0220$	$140-0002$
R300, R306	Barrier Strip, Single Section, 600V	$412-0725$	2
TB303	Barrier Strip, End Cap	$412-0730$	13
----	Bleeder Resistor Mounting Panel, FM-30T/FM-35T	$471-0760$	1
---	Power Amplifier-Power Supply With Power Supply Adjacent	$949-0169$	1
---	Cable Assembly		1

TABLE 6-10. POWER SUPPLY CONTACTOR PANEL - 959-0265-002

REF. DES.	DESCRIPTION	PART NO.	QTY.
K301	Contactor Coil: $208 / 240 \mathrm{~V}$ ac 60 Hz or $190 / 220 \mathrm{~V}$ ac 50 Hz Contacts: 3-Pole, 600 V ac, 40 Amperes	341-0053	1
K302	Contactor, Coil: 208-240V, 60 Hz or $208-220 \mathrm{~V}, 50 \mathrm{~Hz}$ Contacts: 3 Sets SPST, 25 Amperes, 600V	341-0033	1
K303 thru K305	Optically Coupled Relay Circuit Board Assembly	919-0096	3
R311 thru R313	Resistor, 2 Ohm $\pm 5 \%$, 50 W , W/W	132-1004	3
TB301	Barrier Strip, Single Section, 600V	412-0725	14
----	Barrier Strip, End Cap	412-0730	1
----	Power Supply Cabinet Cable Assembly, FM-30T/FM-35T	949-0168	1

TABLE 6-11. OPTICALLY-COUPLED-RELAY (OCR) ASSEMBLY - 919-0096

REF. DES.	DESCRIPTION	PART NO.	QTY.
C1	Capacitor, Ceramic Disc, $0.001 \mathrm{uF}, 1 \mathrm{kV}$	002-1034	1
C2	Capacitor, Electrolytic, 47 uF, 35V	020-4773	1
C3	Capacitor, Ceramic Disc, 0.03 uF, 300V	000-1051	1
C4	Capacitor, Ceramic Disc, $0.001 \mathrm{uF}, 1 \mathrm{kV}$	002-1034	1
D1	Diode, 1N4005, Silicon, 600V @ 1 Ampere	203-4005	1
D2	Diode, Zener, 1N5359, 24V, 5W	200-5359	1
D4	Diode, 1N4005, Silicon, 600V @ 1 Ampere	203-4005	1
D5	Bridge Rectifier, MDA970A3, 4 Amps, 50-200V	239-0003	1
E1 THRU E5	Terminal, Male, 0.25 Tab	410-0025	5
F1, F2	Fuse, PCB Mount, 250V, 3 Amperes	330-0055	2
K1	Relay, Coil: 24 V dc, $30 \mathrm{~A}, 660$ Ohms $\pm 10 \%$ dc Resistance Contacts: SPST, 0.5 to $15 \mathrm{~A} @ 12$ to 240 V dc	270-0054	1
MOV1	Metal Oxide Varistor, V272A60, 27V AC RMS, 120 Joules	140-0023	1
R1	Resistor, $2 \mathrm{k} \mathrm{Ohm} \pm 3 \%$, 10W	130-2032	1
R2	Resistor, 560 Ohm $\pm 5 \%$, 1/2W	110-5633	1
R3	Resistor, 820 Ohm $\pm 5 \%$, 1/2W	110-8233	1
R4	Resistor, 51.1 Ohm $\pm 1 \%$, 1/4W	103-5112	1
R5	Resistor, 2 k Ohm $\pm 3 \%$, 10W	130-2032	1
U1	Integrated Circuit, 4N33, Optical Isolator, Infared LED-Photo NPN Darlington Transistor Coupled Pair, 1500V Isolation	229-0033	1
XU1	Socket, 6-Pin DIP	417-0600	1
--	Relay Dust Cover	270-0054-001	1
----	Blank Circuit Board	519-0096	1

TABLE 6-12. POWER SUPPLY CABINET CABLE ASSEMBLY - 949-0168

REF. DES.	DESCRIPTION	PART NO.	QTY.
P301	Plug, 9-Pin	$417-0900$	
S303	Plug, Banana, 25 Amperes ac	$418-0039$	1
----	Housing, 9-Pin (for P301)	$418-3432$	1
---	Connector, Pins (for P301)	$417-0142$	1

TABLE 6-13. POWER SUPPLY RECTIFIER PANEL ASSEMBLY - 959-0265-005

REF. DES.	DESCRIPTION	PART NO.	QTY.
D300 thru	High Voltage Rectifier Assembly, 28 kV PRV @ 8 Amperes	$230-0004$	6
D305	Jack, Banana, 1 kV , Capacitance: 7.0 uF	$417-0109$	2
S303	High Voltage Rectifier Mounting Panel	$471-0881$	1

TABLE 6-14. POWER AMPLIFIER CABINET ASSEMBLY, FM-25T 60 Hz - 959-0267-125

REF. DES.	DESCRIPTION	PART NO.	QTY.
B201	Blower, HADB 6-2 Motor: $220 / 230 \mathrm{~V}$ ac, Single Phase, $50 / 60 \mathrm{~Hz}, 3450$ RPM @ $60 \mathrm{~Hz} /$ $2850 @ 50 \mathrm{~Hz}, 2 \mathrm{hp}$	380-0010	1
$\begin{aligned} & \text { F201 thru } \\ & \text { F203 } \end{aligned}$	Fuse, AGC, 1 Ampere, Fast-Blow	330-0100	3
S201	Switch, Pressure, 120-480V ac $60 \mathrm{~Hz}, 15$ Amperes	340-0117	1
S203	Interlock Switch, SPDT, 15A @ 125 V ac, $0.5 \mathrm{~A} @ 125 \mathrm{~V}$ dc, $0.25 \mathrm{~A} @ 250 \mathrm{~V}$ dc	346-3302	1
S205	Interlock Switch, SPDT, 15A @ 125V ac, 0.5A @ 125V dc, 0.25A @ 250V dc	346-3302	1
T200	Transformer, Primary: 208/240V +11V RMS, $50 / 60 \mathrm{~Hz}$, Single Phase	370-0011	1
T202	Transformer (Screen) Primary: 208/240V +11V RMS, $50 / 60 \mathrm{~Hz}$, Single Phase Secondary: 900V @ 0.4 Amperes Continuous	370-0010	1
TB203	Barrier Strip, Single Section, 600V	412-0725	17
VR203	Transformer/Regulator, Filament, FM-30T	370-0054	1
----	Three-Phase AC Voltage Monitor, Electromatic EUY C240, 192 to 276 V ac, $50 / 60 \mathrm{~Hz}$	270-0068	1
----	Air Filter, 16 X 20 X 1 Inch (40.64 X 50.8 X 2.54 cm)	407-0062	1
----	Fuse Holder, AGC	415-2012	3
----	Connector, BNC Flanged Modified	417-0203-1	1
----	Adapter, Transmission Line, 3.125 Inches (7.94 cm) flange to Clamping Ring	427-0001	1
----	Transmission Line Elbow, 90, 3.125 Inches	427-0002	1
-----	Elbow, Modified Transmission Line	427-0002-1	1
----	Transmission Line Coupling Assembly with Inner Connector, 3.125 Inches (7.94 cm)	427-0005	2
----	Transmission Line Outer Conductor, 3.125 Inches	463-6713	1
----	PA Current Meter Shunt Board Assembly	919-0048-011	1
----	PA Metering Circuit Board Assembly, FM-30T/FM-35T	919-0148	1
----	Power Amplifier Cabinet Cable Assembly, FM-30T	949-0167-100	1
----	Ground Stick Transmitter Assembly	955-0032	1
----	Transmitter Ground Stick Hanger Assembly	955-0038	1
----	Door, RF Enclosure Assembly, FM-30T	959-0246-001	,
----	Tuning Line Assembly, RF Enclosure, FM-30T	959-0246-003	1
----	RF Enclosure Assembly, FM-30T	959-0246-100	1
----	FM-30T PA Screen \& Bias Panel Assembly	959-0267-001	1
----	FM-30T PA Hum Null Panel Assembly	959-0267-002	1
----	FM-30T PA Blower Boot Assembly	959-0267-004	1
----	Power Stat Panel Assembly, FM-30T/FM-35T	959-0267-103	1
----	FM-30T PA Meter Panel Assembly	959-0267-105	1
----	Tube Socket Assembly, FM-30T/FM-35T	959-0301	1
TB202	Term Block DIN RL MT	411-0281	4
	End Plate, Term Block	411-0281-001	1
	End Stop, Term Block	411-0281-002	2

TABLE 6-15. POWER AMPLIFIER CABINET ASSEMBLY, FM-25T 50 Hz - 959-0268-125

REF. DES.	DESCRIPTION	PART NO.	QTY.
M203	Meter, Elapsed Time, 0-99,999.9 Hour Non-Resettable, $50 \mathrm{~Hz}, 230 \mathrm{~V}, 3.5$ Inch (8.89 cm)	310-0000-003	1
M209	Meter, 3.5 Inch (8.89 cm), Iron Vane Type, 0 V to 500 V ac Range, 150 k Ohm Resistance (PRIMARY VOLTAGE)	310-0060	1
----	Capacitor, $0.5 \mathrm{uF}, 500 \mathrm{~V}$	029-0002	2
----	Resistor, $100 \mathrm{Ohm} \pm 5 \%$, 2 W	132-1033	1
----	Power Amplifier Cabinet Assembly, FM-30T	959-0267-100	1
DELETE FROM ASSEMBLY 959-0267-100			
M203	Meter Elapsed Time, 0-99,999.9 Hour Non-Resettable, $60 \mathrm{~Hz}, 230 \mathrm{~V}, 3.5$ Inch (8.89 cm)	310-0000-002	1
M209	Meter, 3.5 Inch (8.89 cm), Iron Vane Type, 0 V to 300 V ac Range, 60 k Ohm Resistance	310-0032	1

TABLE 6-16. POWER AMPLIFIER CABINET ASSEMBLY, FM-30T 60 Hz - 959-0267-100 (Sheet 1 of 2)

REF. DES.	DESCRIPTION	PART NO.	QTY.
B201	Blower, $1200 \mathrm{ft3} / \mathrm{min}$ @ 3 Inches of H20 Resistance Motor: $230 / 460 \mathrm{~V}$ ac, Three Phase, $50 / 60 \mathrm{~Hz}, 1725 \mathrm{R} / \mathrm{M}, 3 \mathrm{hp}$	380-0006	1
$\begin{aligned} & \text { F201 thru } \\ & \text { F203 } \end{aligned}$	Fuse, AGC, 1 Ampere, Fast-Blow	330-0100	3
S201	Switch, Pressure, 120-480V ac $60 \mathrm{~Hz}, 15$ Amperes	340-0011	1
S203	Interlock Switch, SPDT, 15A @ 125 V ac, $0.5 \mathrm{~A} @ 125 \mathrm{~V}$ dc, 0.25A @ 250 V dc	346-3302	1
S205	Interlock Switch, SPDT, 15A @ 125 V ac, $0.5 \mathrm{~A} @ 125 \mathrm{~V}$ dc, $0.25 \mathrm{~A} @ 250 \mathrm{~V}$ dc	346-3302	1
T200	Transformer, Primary: $208 / 240 \mathrm{~V}+11 \mathrm{~V}$ RMS, $50 / 60 \mathrm{~Hz}$, Single Phase	370-0011	1
T202	Transformer (Screen) Primary: 208/240V +11V RMS, $50 / 60 \mathrm{~Hz}$, Single Phase Secondary: 900V @ 0.4 Amperes Continuous	370-0010	1
TB203	Barrier Strip, Single Section, 600V	412-0725	17
VR203	Transformer/Regulator, Filament, FM-30T	370-0054	1
----	Three-Phase AC Voltage Monitor, Electromatic EUY C240, 192 to 276 V ac, $50 / 60 \mathrm{~Hz}$	270-0068	1
----	Air Filter, 16 X 20 X 1 Inch (40.64 X 50.8 X 2.54 cm)	407-0062	1
----	Fuse Holder, AGC	415-2012	3
----	Connector, BNC Flanged Modified	417-0203-1	1
----	Adapter, Transmission Line, 3.125 Inches (7.94 cm) flange to Clamping Ring	427-0001	1
----	Transmission Line Elbow, 90°, 3.125 Inches	427-0002	1
-----	Elbow, Modified Transmission Line	427-0002-1	1
----	Transmission Line Coupling Assembly with Inner Connector, 3.125 Inches (7.94 cm)	427-0005	2
----	Transmission Line Outer Conductor, 3.125 Inches	463-6713	1
---	PA Current Meter Shunt Board Assembly	919-0048-011	1
----	PA Metering Circuit Board Assembly, FM-30T/FM-35T	919-0148	1
----	Power Amplifier Cabinet Cable Assembly, FM-30T	949-0167-100	1
----	Ground Stick Transmitter Assembly	955-0032	1
----	Transmitter Ground Stick Hanger Assembly	955-0038	1
----	Door, RF Enclosure Assembly, FM-30T	959-0246-001	1

TABLE 6-16. POWER AMPLIFIER CABINET ASSEMBLY, FM-30T 60 Hz - 959-0267-100 (Sheet 2 of 2)

REF. DES.	DESCRIPTION	PART NO.	QTY.
---	Tuning Line Assembly, RF Enclosure, FM-30T	$959-0246-003$	1
---	RF Enclosure Assembly, FM-30T	$959-0246-100$	1
----	FM-30T PA Screen \& Bias Panel Assembly	$959-0267-001$	1
----	FM-30T PA Hum Null Panel Assembly	$959-0267-002$	1
----	FM-30T PA Blower Boot Assembly	$959-0267-004$	1
----	Power Stat Panel Assembly, FM-30T/FM-35T	$959-0267-103$	1
----	FM-30T PA Meter Panel Assembly	$959-0267-105$	1
--	Tube Socket Assembly, FM-30T/FM-35T	$959-0301$	1

TABLE 6-17. POWER AMPLIFIER CABINET ASSEMBLY, FM-30T 50 Hz - 959-0268-100

REF. DES.	DESCRIPTION	PART NO.	QTY.
M203	Meter, Elapsed Time, 0-99,999.9 Hour Non-Resettable, $50 \mathrm{~Hz}, 230 \mathrm{~V}, 3.5$ Inch (8.89 cm)	310-0000-003	1
M209	Meter, 3.5 Inch (8.89 cm), Iron Vane Type, 0 V to 500 V ac Range, 150 k Ohm Resistance (PRIMARY VOLTAGE)	310-0060	1
----	Capacitor, $0.5 \mathrm{uF}, 500 \mathrm{~V}$	029-0002	2
----	Resistor, 100 Ohm $\pm 5 \%$, 2W	132-1033	1
---	Three-Phase AC Voltage Monitor, Electromatic EUY C 400, 320 to 460 V ac, $50 / 60 \mathrm{~Hz}$	270-0069	1
----	Power Amplifier Cabinet Assembly, FM-30T DELETE FROM ASSEMBLY 959-0267-100	959-0267-100	1
----	Three-Phase AC Voltage Monitor, Electromatic DPC01DM23, 192 to 276 V ac, $50 / 60 \mathrm{~Hz}$	270-0068	1
M203	Meter Elapsed Time, 0-99,999.9 Hour Non-Resettable, $60 \mathrm{~Hz}, 230 \mathrm{~V}$, 3.5 Inch (8.89 cm)	310-0000-002	1
M209	Meter, 3.5 Inch (8.89 cm), Iron Vane Type, 0 V to 300 V ac Range, 60 k Ohm Resistance	310-0032	1

TABLE 6-18. POWER AMPLIFIER CABINET ASSEMBLY, FM-35T 60 Hz -959-0267-135

REF. DES.	DESCRIPTION	PART NO.	QTY.
---	RF Enclosure Tuning Line Assembly, FM-35T	$959-0246-006$	1
----	RF Enclosure Assembly, FM-35T	$959-0246-110$	1
----	Meter Panel Assembly, FM-35T	$959-0267-108$	1
---	Power Amplifier Cabinet Assembly, FM-30T	$959-0267-100$	1
	DELETE FROM ASSEMBLY 959-0267-100		
----	Tuning Line Assembly, RF Enclosure, FM-30T	$959-0246-003$	1
----	RF Enclosure Assembly, FM-30T	$959-0246-100$	1
---	FM-30T PA Meter Panel Assembly	$959-0267-105$	1

TABLE 6-19. POWER AMPLIFIER CABINET ASSEMBLY, FM-35T 50 Hz -959-0268-135

REF. DES.	DESCRIPTION	PART NO.	QTY.
M203	Meter, Elapsed Time, 0-99,999.9 Hour Non-Resettable, $50 \mathrm{~Hz}, 230 \mathrm{~V}, 3.5$ Inch (8.89 cm)	310-0000-003	1
M209	Meter, 3.5 Inch (8.89 cm), Iron Vane Type, 0 V to 500 V ac Range, 150 k Ohm Resistance (PRIMARY VOLTAGE)	310-0060	1
----	Capacitor, $0.5 \mathrm{uF}, 500 \mathrm{~V}$	029-0002	2
----	Resistor, $100 \mathrm{Ohm} \pm 5 \%$, 2 W	132-1033	1
	Three-Phase AC Voltage Monitor, Electromatic DPC01DM48, 320 to 460 V ac, $50 / 60 \mathrm{~Hz}$	270-0069	1
----	RF Enclosure Tuning Line Assembly, FM-35T	959-0246-006	1
----	RF Enclosure Assembly, FM-35T	959-0246-110	1
----	Power Amplifier Cabinet Assembly, FM-30T	959-0267-100	1
----	Meter Panel Assembly, FM-35T DELETE FROM ASSEMBLY 959-0267-100	959-0267-108	1
M203	Meter Elapsed Time, 0-99,999.9 Hour Non-Resettable, $60 \mathrm{~Hz}, 230 \mathrm{~V}, 3.5$ Inch (8.89 cm)	310-0000-002	1
M209	Meter, 3.5 Inch (8.89 cm), Iron Vane Type, 0 V to 300 V ac Range, 60 k Ohm Resistance	310-0032	1
---	Three-Phase AC Voltage Monitor, Electromatic EUY C240, 192 to 276 V ac, $50 / 60 \mathrm{~Hz}$	270-0068	1
----	Tuning Line Assembly, RF Enclosure, FM-30T	959-0246-003	1
----	RF Enclosure Assembly, FM-30T	959-0246-100	1
-----	FM-30T PA Meter Panel Assembly	959-0267-105	1

TABLE 6-20. POWER AMPLIFIER METERING CIRCUIT BOARD ASSEMBLY - 919-0148 (Sheet 1 of 2)

REF. DES.	DESCRIPTION	PART NO.	QTY.
C1 thru C3	Capacitor, Mica, $390 \mathrm{pF} \pm 5 \%$, 100V	042-3922	3
C4, C5	Capacitor, Monolythic Ceramic, $0.1 \mathrm{uF} \pm 20 \%$, 50 V	003-1054	2
C6, C7	Capacitor, Mica, $390 \mathrm{pF} \pm 5 \%, 100 \mathrm{~V}$	042-3922	2
C8, C9	Capacitor, Monolythic Ceramic, $0.1 \mathrm{uF} \pm 20 \%, 50 \mathrm{~V}$	003-1054	2
C10	Capacitor, Mica, $390 \mathrm{pF} \pm 5 \%$, 100V	042-3922	1
C11 thru C13	Capacitor, Monolythic Ceramic, $0.1 \mathrm{uF} \pm 20 \%, 50 \mathrm{~V}$	003-1054	3
C14	Capacitor, Mica, $390 \mathrm{pF} \pm 5 \%$, 100V	042-3922	1
C15, C16	Capacitor, Monolythic Ceramic, $0.1 \mathrm{uF} \pm 20 \%$, 50 V	003-1054	2
C17	Capacitor, Mica, $390 \mathrm{pF} \pm 5 \%, 100 \mathrm{~V}$	042-3922	1
C18	Capacitor, Monolythic Ceramic, $0.1 \mathrm{uF} \pm 20 \%$, 50 V	003-1054	1
C19	Capacitor, Mica, $390 \mathrm{pF} \pm 5 \%, 100 \mathrm{~V}$	042-3922	1
C20	Capacitor, Monolythic Ceramic, $0.1 \mathrm{uF} \pm 20 \%$, 50 V	003-1054	1
C21	Capacitor, Electrolytic, 470 uF, 50V	024-4783	1
D1 thru D7, D9	Diode, Zener, 1N4739A, 9.1V $\pm 5 \%$, 1W	200-0009	8
D10, D11	Diode, Transzorb, $\pm 24 \mathrm{~V}, 1.5 \mathrm{KE} 24 \mathrm{CA}$	206-0024	2
D12	Diode, Zener Voltage Suppressor, $\pm 12 \mathrm{~V}$	201-0012	1
D13, D14	Diode, Transzorb, $\pm 22 \mathrm{~V}, 1.5 \mathrm{KE} 22 \mathrm{CA}$	206-0022	2
E1 thru E10	Terminal, Male Disconnect	410-0025	10
E11, E12	Terminal, Turret, Double Shoulder	413-1597	2
E13	Terminal, Male Disconnect	410-0025	1
F1, F2	Fuse, AGC, 1 Ampere, Fast-Blow	330-0100	2
F3	Fuseable Link, 0.028 in (0.528 cm) of 28 AWG Silver-plated copper wire	630-2806	1
J1	Connector, Printed Circuit Board Mounting, 10-Pin (Dual 5)	418-1003	1
J2	Connector, Housing, 15-Pin	417-0169	1
J3	Receptacle, 4-Pin	418-0255	1

TABLE 6-20. POWER AMPLIFIER METERING CIRCUIT BOARD ASSEMBLY - 919-0148

(Sheet 2 of 2)

REF. DES.	DESCRIPTION	PART NO.	QTY.
R1, R40, R42	Resistor, $100 \mathrm{Ohm} \pm 1 \%$, 3W	130-1033-300	3
R2, R3	Resistor, $4 \mathrm{Ohm} \pm 1 \%$, 8W, WW	131-4001	2
R4, R5	Resistor, $500 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 2W	140-0005	2
R6	Resistor, $4.99 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	100-5041	1
R7	Resistor, $5.11 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-5141	1
R8	Resistor, $4.99 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	100-5041	1
R9	Resistor, $500 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 2W	140-0005	1
R10	Resistor, $5.62 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-5624	1
R11	Resistor, $49.9 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-4951	1
R12	Resistor, 26.7 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-2675	1
R13	Resistor, $49.9 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-4951	1
R14	Resistor, 10 k Ohm $\pm 1 \%$, 1/4W	100-1051	1
R15	Resistor, $100 \mathrm{Ohm} \pm 5 \%$, 1/2W	110-1033	1
R16, R17	Resistor, $10 \mathrm{Ohm} \pm 1 \%$, 3W, WW	130-1021	2
R18	Resistor, $1 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	100-1041	1
R19	Resistor, $24.3 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-2435	1
R20	Resistor, $16.2 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-1625	1
R21	Resistor, $49.9 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-4951	1
R22	Resistor, $4.99 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	100-5041	1
R23	Resistor, 1 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	100-1041	1
R24, R25	Resistor, $20 \mathrm{Ohm} \pm 1 \%$, 1W, WW	120-2021	2
R26	Resistor, 1 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	100-1041	1
R27	Resistor, $24.3 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-2435	1
R28	Resistor, $16.2 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-1625	1
R29	Resistor, $49.9 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	103-4951	1
R30	Resistor, $4.99 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	100-5041	1
R31, R32	Resistor, $10 \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	103-1021	2
R33, R34	Resistor, $2.49 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-2494	2
R37	Resistor, 100 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-1062	1
R39	Resistor, 3.74 k Ohm $\pm 1 \%$, 1/4W	103-3744	1
R41	Resistor, 1 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	100-1041	1
TP1	Terminal, Turret, Double Shoulder	413-1597	1
U1, U2	Integrated Circuit, LM358N, Dual Operational Amplifier, 8-Pin DIP	221-0358	2
XF1 thru XF4	Fuse Clips, AGC	415-2068	4
XU1, XU2	Socket, 8-Pin DIP	417-0804	2
----	RF Choke, $2.2 \mathrm{uH} \mathrm{10} \mathrm{\%}, \mathrm{0.4} \mathrm{Ohms} \mathrm{DC} \mathrm{Resistance}$,550 mA Maximum	360-2200	1
----	Blank, Power Amplifier Metering Circuit Board, T Series	519-0148	1

TABLE 6-21. POWER AMPLIFIER CURRENT METER SHUNT BOARD ASSEMBLY -919-0048-011

REF. DES.	DESCRIPTION	PART NO.	QTY.
C1, C2	Capacitor, Mica, 390 pF $\pm 5 \%, 100 \mathrm{~V}$	$042-3922$	2
D1	Transzorb Diode, 27V	$206-0027$	1
D2, D3	Diode, Zener 15V, 15W, 1N532B	$200-5352$	2
E1, E1A	Terminal, Male Disconnect PC 0.25 Tab	$410-0025$	2
E2 thru E10	Terminal, Male Disconnect PC 0.25 Tab	$410-0025$	8
E11, E12	Terminal, Turret, 2 Shoulder, 0.219, Gold Flash	$413-1597$	2
F1, F2	Fuse, AGC, 1 Amp	$330-0100$	2
F3	Wire, Wirewrap, 28 AWG, 2.5 inches	$630-2806$	1
F4	Fuse, 3 AG, 1.0A, Fast	$330-0011$	1
G1, G4	Spark Gap, 75V	$140-0041$	2
J102	Connector, Pcb Mount, 2 Pin	$140-0700$	1
MOV1	Varistor, 27V, V27ZA60	$132-0111$	2
R1 thru R5	Resistor, 1 Ohm, 10W, $\pm 1 \%$, Wire Wound	$130-2503$	5
R6	Resistor, 250 Ohm, 25W, $\pm 5 \%$, Wire Wound	$415-2068$	1
XF1 thru XF6	Clip, Fuse, Littel Fuse, 102071	$519-0048-011$	1

TABLE 6-22. POWER AMPLIFIER CABINET CABLE ASSEMBLY - 949-0167-100

REF. DES.	DESCRIPTION	PART NO.	QTY.
---	Pins, Connector	417-0053	22
----	Bulkhead Disconnect Type N to BNC	417-0076	1
----	Plug, BNC for RG-142 cable	417-0095	1
----	Connector, Straight N for 82-340 Cable	417-0120	2
----	Pins, Connector	417-0142	32
----	Pins, Socket	417-0143	5
----	Connector Plug, 25-Pin	417-0251	1
----	Plug, Connector 9-Pin D-Type	417-0900	1
----	Receptacle, 9-Pin	417-0901	1
----	Socket, Connector, 10-Pin	417-1003	2
----	Connector, Housing, 15-Pin	417-2379	1
----	Plug, Housing, 4-Pin	418-0240	1
--	Connector Housing, 6-Pin	418-0670	1
----	Assembly, Cable Clamp, 9-Pin	418-0901	1
---	Latching Block, Cable	418-2502	4
-	Connector, Strain Relief	418-3223	1

TABLE 6-23. RF ENCLOSURE ASSEMBLY, FM-30T - 959-0246-100 Sheet 1 of 2)

REF. DES. DESCRIPTION PART NO. QTY.

C6	High Voltage Feed-Thru Capacitor Assembly	$955-0049-001$	1
C9	Capacitor Plate for Second Harmonic Suppressor	$474-0263$	1
L6	Inductor, Second Harmonic Suppressor (Above 99 MHz)	$479-0053-001$	1
L6	Inductor, Second Harmonic Suppressor (Below 99 MHz)	$479-0054-001$	1
L9	FM-30 Chimney Assembly	$959-0246-008$	1
L13	RF Enclosure Loop Assembly, FM-30T	$959-0246-002$	1
S202A	Interlock Switch, SPDT, 11A@ 125 V or 250 V ac, $0.5 \mathrm{~A} @ 125 \mathrm{~V} \mathrm{dc}$,	$346-6100$	1

TABLE 6-23. RF ENCLOSURE ASSEMBLY, FM-30T - 959-0246-100
(Sheet 2 of 2)

REF. DES.	DESCRIPTION	PART NO.	QTY.
---	RF Choke (Plate Circuit Connection)	$360-0004$	
---	Plug, Banana	$418-0188$	1
---	Connector, Output Coupling Loop	$419-0034$	1
---	Meter Multiplier Circuit Board Assembly, FM-30T	$919-0079$	1
----	RF Enclosure Top Assembly, FM-30T	$959-0246-104$	1
----	Flange, 3 1/8 Inch Myat 301-014	$427-0001$	1
----	End Cap, Barrier Strip	$412-0730$	1
----	Flexible Shaft, 36 Inch	$446-0001$	1
----	Coupling, Helical	$447-0029$	1
---	Assembly, Ground Stick	$959-0145$	1

TABLE 6-24. RF ENCLOSURE ASSEMBLY, FM-35T - 959-0246-110 (Sheet 1 of 2)

REF. DES.	DESCRIPTION	PART NO.	QTY.
C6	High Voltage Feed-Thru Capacitor Assembly	955-0049-001	1
C9	Capacitance Plate Assembly Second Harmonic Suppressor (99 MHz to 108 MHz)	474-0319	1
C9	Capacitor Plate for Second Harmonic Suppressor (88 MHz to 99 MHz)	474-0319-001	1
L6	Inductor, Second Harmonic Suppressor (Above 99 MHz)	479-0053-001	1
L6	Inductor, Second Harmonic Suppressor (Below 99 MHz)	479-0054-001	1
L9	FM-35 Chimney Assembly	959-0246-009	1
R1	Resistor, 100 Ohm $\pm 1 \%$, 150W	139-0006	1
S202A	Interlock Switch, SPDT, 11A @ 125 V or 250 V ac, $0.5 \mathrm{~A} @ 125 \mathrm{~V}$ dc, 0.25A @ 250V dc	346-6100	1
----	RF Choke (Plate Circuit Connection)	360-0004	1
----	Plug, Banana	418-0188	1
----	Connector, Output Coupling Loop	419-0034	1
---	Adapter, Transmission Line, 3.125 Inches (7.94 cm) flange to Clamping Ring	427-0001	1
----	Meter Multiplier Circuit Board Assembly	919-0097	1
----	RF Enclosure Loop Assembly, FM-35T	959-0246-007	1
----	RF Enclosure Top Assembly, FM-35T	959-0246-105	1

TABLE 6-25. METER MULTIPLIER CIRCUIT BOARD ASSEMBLY, FM-30T - 919-0079

REF. DES.	DESCRIPTION	PART NO.	QTY.
C1	Capacitor, Mica, $390 \mathrm{pF} \pm 5 \%, 100 \mathrm{~V}$	$042-3922$	
D1	Diode, Zener, $1 \mathrm{~N} 4739 \mathrm{~A}, 9.1 \mathrm{~V} \pm 10 \%, 1 \mathrm{~W}$	$200-0009$	1
D2	Diode, Zener, Voltage Suppressor, $\pm 12 \mathrm{~V}$	$201-0012$	1
R1 THRU R10	Resistor, 1 Meg Ohm $\pm 1 \%, 2 \mathrm{~W}$	$140-0003$	1
R11	Resistor, $4.99 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	$100-5041$	10
---	Blank Circuit Board	$519-0079$	1

TABLE 6-26. METER MULTIPLIER CIRCUIT BOARD ASSEMBLY, FM-35T - 919-0097

REF. DES.	DESCRIPTION	PART NO.	QTY.
C1	Capacitor, Mica, $390 \mathrm{pF} \pm 5 \%, 100 \mathrm{~V}$	$042-3922$	
D1	Diode, Zener, 1N4739A, $9.1 \mathrm{~V} \pm 10 \%, 1 \mathrm{~W}$	$200-0009$	1
D2	Diode, Zener, Voltage Suppressor, $\pm 12 \mathrm{~V}$	$201-0012$	1
R1 THRU	Resistor, 1 Meg Ohm $\pm 1 \%, 2 \mathrm{~W}$	$140-0003$	1
R14	Resistor, $4.99 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	$100-5041$	14
R15	Blank Circuit Board	$519-0097$	1

TABLE 6-27. CHIMNEY ASSEMBLY, FM-30T - 959-0246-008 CHIMNEY ASSEMBLY, FM-35T - 959-0246-009

REF. DES.	DESCRIPTION	PART NO.	QTY.
----	Jack, Banana	FOR 959-0246-008 ASSEMBLY	$417-0157$
----	Chimney, PA	FOR 959-0246-009 ASSEMBLY	1
		$459-0073$	1
----	Chimney, PA		$459-1112$

TABLE 6-28. RF ENCLOSURE TOP ASSEMBLY, FM-30T - 959-0246-104 RF ENCLOSURE TOP ASSEMBLY, FM-35T - 959-0246-105

REF. DES.	DESCRIPTION	PART NO.	QTY.
----	Exhaust Air Temperature Circuit Board Assembly	$919-0082$	1
----	Flange, Adaptor, Modified	$427-0001-1$	1
	Flange, Adaptor, Modified		$427-0053-001$
----		1	

TABLE 6-29. EXHAUST AIR TEMPERATURE CIRCUIT BOARD ASSEMBLY - 919-0082

REF. DES.	DESCRIPTION	PART NO.	QTY.
C1,C2	Capacitor, Mica, $390 \mathrm{pF} \pm 5 \%, 100 \mathrm{~V}$	$042-3922$	2
C3,C4	Capacitor, Ceramic, $0.001 \mathrm{uF} \pm 10 \%, 1 \mathrm{kV}$	$002-1034$	2
J1	Socket, 4-Pin	$418-0255$	1
R1	Resistor, 10 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	$100-1051$	1
R2	Resistor, 2.21 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	$103-2241$	1
TP1, TP2	Terminal Turret, Two Shoulder	$413-1597$	2
U1	Integrated Circuit, LM35DZ, Celsius Temperature Sensor,	$220-0035$	1
---	TO-92 Case	$519-0082$	1

TABLE 6-30. PA SCREEN \& BIAS PANEL ASSEMBLY - 959-0267-001

REF. DES.	DESCRIPTION	PART NO.	QTY.
C202	Capacitor, Electrolytic, $300 \mathrm{uF} \pm 10 \%$, 450V	025-9086	1
C221, C222	Capacitor, Electrolytic, $170 \mathrm{uF}, 450 \mathrm{~V}$, Mallory	014-1703	2
D200, D201	Bridge Rectifier, H440: Peak Reverse Voltage: 4000V DC Forward Current: 750 mA Forward Voltage @ 150 mA dc: 6.0 Volts	239-0440	2
R202	Resistor, 1 k Ohm $\pm 5 \%$, 100W, W/W	132-1043	1
R209, R210	Resistor, 5 k Ohm, $50 \mathrm{~W}, \mathrm{~W} / \mathrm{W}$	180-0578	2
R211	Resistor, $50 \mathrm{Ohm}, 25 \mathrm{~W}, \mathrm{~W} / \mathrm{W}$	130-5023	1
R214	Resistor, 500 Ohm, Variable, 50W	130-5033	1
K201	Contactor, Coil: 208-240V, 60 Hz or $208-220 \mathrm{~V}, 50 \mathrm{~Hz}$ Contacts: 3 Sets SPST, 25 Amperes, 600V	341-0033	1
K202	Optically Coupled Relay Circuit Board Assembly	919-0096	1
L200, L201	Choke, 10 Henrys, 0.4 Amperes, 2500 Volt Insulation, 92 Ohm dc Resistance	377-0002	2

TABLE 6-31. PA HUM NULL PANEL ASSEMBLY - 959-0267-002

REF. DES.	DESCRIPTION	PART NO.	QTY.
C242	Capacitor, Electrolytic, $100 \mathrm{uF}, 25 \mathrm{~V}$		
F204	Fuse, AGC, 250V, $1 / 2$ Ampere	$013-1084$	1
R216	Potentiometer, 50 Ohm $\pm 10 \%, 25 \mathrm{~W}, \mathrm{~W} / \mathrm{W}$	$330-0050$	1
T206	Transformer, Hum Null, 12.6V CT	$195-0149-001$	1
	Dual Primary: 115/230V, $50 / 60 \mathrm{~Hz}$	$376-0232$	1
	Secondary: 12V @ 1 Ampere		
TB11	Barrier Strip, 5 Terminals	$412-0005-1$	1
----	Fuse Holder, Panel Mount	$415-0004$	1
----	Hum Null Panel Assembly	$460-0035$	1

TABLE 6-32. POWER STAT PANEL ASSEMBLY - 959-0267-103

REF. DES.	DESCRIPTION	PART NO.	QTY.
B202	Motor and Gearhead Assembly, 24V dc @ $235 \mathrm{~mA}, 9.1 \mathrm{r} / \mathrm{min}$, Torque: $300 \mathrm{oz} / \mathrm{in}$.	381-0001	1
S206, S207	Microswitch, Modified, SPDT, 125V @ 4 Amperes Inductive	346-6100-1	2
T201	Powerstat Variable Transformer, Single Phase Input: $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ Output: 0-240V @ 5 Amperes	370-0216	1
----	Barrier Strip, 4 Terminal	412-0011	1
----	Diode, 1N4005, Silicon, 600V @ 1 Ampere	203-4005	2

TABLE 6-33. PA METER PANEL ASSEMBLY, FM-30T - 959-0267-105 PA METER PANEL ASSEMBLY, FM-35T - 959-0267-108 (Sheet 1 of 2)

REF. DES.	DESCRIPTION	PART NO.	QTY.
$\begin{aligned} & \text { C243 thru } \\ & \text { C247 } \end{aligned}$	Capacitor, Ceramic, $0.001 \mathrm{uF}, 1 \mathrm{kV}$	002-1034	5
----	Cyclometer	290-0001	3
$\begin{aligned} & \text { CB200, } \\ & \text { CB201 } \end{aligned}$	Circuit Breaker, KD1-0.5 ,Heinemann, 0.5 Amps	341-0057	2
CB202	Circuit Breaker, 2 Pole, 250 V ac, 3 Amperes	341-0055	1
$\begin{aligned} & \text { CB203, } \\ & \text { CB204 } \end{aligned}$	Circuit Breaker, 15 Amps, 250V ac, Push-On	341-0059	2
M200	Meter, 0-105\% Power, 3.5" Window Mount, Taut Band, 0-200 Microamps	310-0058	1
M203	Meter Elapsed Time, 0-99,999.9 Hour Non-Resettable, 60 Hz $230 \mathrm{~V}, 3.5$ Inch (8.89 cm)	310-0000-002	1
M205	Multimeter, 3.5" Window Mount, Taut Band	310-0057	1
M206	Meter, 3.5 Inch (8.89 cm), Iron Vane Type, $0-15 \mathrm{~V}$ ac Movement $\pm 3 \%$, 90\# Arc	310-0025	1
M207	Meter, $0-10 \mathrm{kV} \mathrm{dc}, 3.5$ " Window Mount, Taut Band, 0-200 microamps	310-0051	1

M207	Meter, $0-14 \mathrm{kV} \mathrm{dc}, 3.5$ " Window Mount, Taut Band	310-0052	1
M208	Plate I Meter 0-5A Assembly, FM-30T	959-0293	1
M209	Meter, 3.5 Inch (8.89 cm), Iron Vane Type, 0 V to 300 V ac Range, 60 k Ohm Resistance	310-0032	1
$\begin{aligned} & \text { S206A thru } \\ & \text { S209 } \end{aligned}$	Contact Assembly, KA-1	341-0020	4
$\begin{aligned} & \text { S206A thru } \\ & \text { S209 } \end{aligned}$	Selector Switch Assembly, KS-46B, Black, 3-Position	341-0021	1
T204	Transformer, Variable, Modified	370-1790-001	1
----	446-0047V Transmitter Counter Drive	446-0016	3
----	Knob, RB-67-5-CT-M, Black Matte	482-0027	3
----	Knob, RB-67-3-MD, Black Matte	482-0029	1
----	Multimeter Circuit Board Assembly	919-0049	1

TABLE 6-34. MULTIMETER CIRCUIT BOARD ASSEMBLY - 919-0049

REF. DES.	DESCRIPTION	PART NO.	QTY.
	Terminal, Male Disconnect	$410-0025$	
E1, E2	Connector, 10-Pin	$418-1003$	2
J1	Switch, Rotary, 8 Position, 15A @ 1000V ac	$340-0110$	1
S1	Blank PA Multimeter Circuit Board	$519-0049$	1

TABLE 6-35. METER ASSEMBLY, PLATE CURRENT - 959-0293

REF. DES.	DESCRIPTION	PART NO.	QTY.
M208	Meter, 3.5 Inch (8.89 cm), Taut Band Type, FS $=1 \mathrm{~mA} \mathrm{dc} \pm 2 \%$, Scale: 0-5 Amperes, 35 Ohm Resistance Meter Protection Circuit Board Assembly	$310-0056$	1
----		$919-0109-002$	1

TABLE 6-36. METER PROTECTION CIRCUIT BOARD ASSEMBLY - 919-0109-002

REF. DES.	DESCRIPTION	PART NO.	QTY.
C1, C2	Capacitor, Ceramic Disc, $0.001 \mathrm{uF}, 1000 \mathrm{~V}$	$002-1034$	
D1	Diode, Zener, 1N4728, $3.3 \mathrm{~V} \pm 5 \%, 1 \mathrm{~W}$	$201-4728$	2
E1, E2	Terminal Male Disconnect	$410-0025$	1
R1	Resistor, 680 Ohm $\pm 5 \%, 1 \mathrm{~W}$	$120-6833$	2
R2	Resistor, 182 Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	$103-1823$	1
R3	Potentiometer, 200 Ohm $\pm 10 \%, 1 / 2 \mathrm{~W}$	$177-2034$	1
---	Blank Meter Protection Circuit Board	$519-0109$	1

TABLE 6-37. TUBE SOCKET ASSEMBLY -959-0301

REF. DES.	DESCRIPTION	PART NO.	QTY.
C4, C5	Capacitor, Ceramic, $500 \mathrm{pF} \pm 20 \%, 5 \mathrm{kV}$	008-5024	2
C7, C8	Capacitor, Screen Bypass, Printed Circuit Board	519-0037	2
C10, C11	Capacitor, Grid Tuning, Printed Circuit Board	519-0208	2
C13, C14	Capacitor, Filament Feedthru	519-0039	4
C15	Capacitor, Ceramic, $500 \mathrm{pF} \pm 20 \%, 5 \mathrm{kV}$	008-5024	1
C16	Capacitor, Ceramic, $1000 \mathrm{pF} \pm 20 \%$, 5 kV	008-1036	1
C17, C18	Capacitor, Screen Bypass, Printed Circuit Board	519-0037	2
C19	Capacitor, Grid Tuning, Printed Circuit Board	519-0208	1
C20	Capacitor, Ceramic, $500 \mathrm{pF} \pm 20 \%$, 5 kV	008-5024	1
C21, C22	Filter, RFI 2500V, 25A Feedthru	339-0012	2
E1	Spark Gap, 1000V dc $\pm 20 \%$ Breakdown, 2500A Discharge Maximum	140-0015	1
E2	Spark Gap, 2500 V dc $\pm 20 \%$ Breakdown, 5000A Discharge Maximum	140-0016	1
L5A	Inductor, Input Matching	463-0082-001	
	Optional Inductor	463-0096	1
	Optional Inductor	463-0082	1
L5B	Inductor, Input	474-0313	1
L7/A, L8/A	Inductor, Neutralization	463-0083	4
L9, L10	Inductor, Input Tuning	474-0321	2
L11, L12,	Inductor, Tube Socket Mounting		
L14, L15	88 MHz to 91 MHz	441-8587	4
	91 MHz to 94 MHz	441-0157	4
	94 MHz to 98 MHz	441-8587	5
	98 MHz to 102 MHz	441-0162	4
	102 MHz to 108 MHz	[441-0162	$4]$
		[441-8587	$2]$
L17/A, L18/A	Inductor, Neutralization	463-0083	4
L19	Inductor, Input Tuning	474-0370	1
R1	Resistor, 750 Ohm $\pm 10 \%$, 50 W	139-7532	1
R2, R3	Resistor, 1.5 Ohm $\pm 5 \%$, 10W	132-0114	2
XV1	Assembly, Tube Socket	417-0360	1
	Input Matching Circuit Board Assembly	919-0064-002	1

TABLE 6-38. INPUT MATCHING CIRCUIT BOARD ASSEMBLY - 919-0064-002

REF. DES.	DESCRIPTION	PART NO.	QTY.
E1 THRU E5	Terminal, Turret, Double Shoulder	$413-0025$	6
E8	Connector, BNC	$417-0014$	1
J2	Blank PA Input Matching Circuit Board	$519-0064$	1
----	Matching Capacitor Circuit Board	$519-0064-001$	1

TABLE 6-39. DRIVER CABINET ASSEMBLY - 959-0297-100

REF. DES.	DESCRIPTION	PART NO.	QTY.
S102	Interlock Switch, SPDT, 15A @ 125 V ac, $0.5 \mathrm{~A} @ 125 \mathrm{~V}$ dc, $0.25 \mathrm{~A} @ 250 \mathrm{~V}$ dc	346-3302	1
----	Filter, Air 16X20X1	407-0062	1
----	Driver Cabinet Wiring Harness Assembly	949-0142-100	1
----	Transmitter Controller Assembly	959-0430	1
----	IPA Assembly	959-0421	1
----	AC Distribution Panel	959-0297-002	1
----	Driver Fan Assembly	959-0297-005	1
--	Assembly, Remote Interface Panel	959-0297-103	1

TABLE 6-40. DRIVER CABINET WIRING HARNESS ASSEMBLY - 949-0142-100

REF. DES.	DESCRIPTION	PART NO.	QTY.
J101	Receptacle, 25-Pin D-Type	$417-0252$	
J102	Receptacle, 9-Pin D-Type	$417-0901$	1
P2, P3, P8	Connector, 25-Pin D-Type	$417-0251$	1
----	AC Line Cord With Ears, 220V	$682-0004$	3
----	Pins, Socket	$417-0143$	2
----	Connector, BNC, Crimp Type, RG58U Cable	$417-0094$	27
----	Connector, 9-Pin	$417-0059$	4
----	Pins, Connector	$417-0053$	1
----	Pins, Connector	$417-0142$	2
----	Connector, 2 Pole 3 Wire, 15A, 250V	$417-0320$	53
-	Connector, 37-Pin Male	$417-2819$	1
			1

TABLE 6-41. AC DISTRIBUTION PANEL ASSEMBLY - 959-0297-002

REF. DES.	DESCRIPTION	PART NO.	QTY.
TB104, TB105 Terminal Block, 9-Position $412-0090$	1		

TABLE 6-42. DRIVER FAN ASSEMBLY - 959-0297-005

REF. DES.	DESCRIPTION	PART NO.	QTY.
B101, B102	Fan, 6 inch $(15.24 \mathrm{~cm}), 250 \mathrm{ft} 3 / \min 220 \mathrm{~V} \mathrm{ac}, 50 / 60 \mathrm{~Hz}, 40 \mathrm{Watt}$	$380-7650$	2
P103	Housing, 9-Pin Connector	$418-0055$	1
---	Pin Connector	$417-0036$	6

TABLE 6-43. REMOTE INTERFACE PANEL ASSEMBLY - 959-0297-103

REF. DES.	DESCRIPTION	PART NO.	QTY.
----	Remote Interface Circuit Board Assembly	$919-0439$	1

TABLE 6-44. REMOTE INTERFACE CIRCUIT BOARD ASSEMBLY - 919-0439

REF. DES.	DESCRIPTION	PART NO.	QTY.
	Connector, 40-Pin RibbonCable	$417-0173$	
J1	Barrier Strip, 30-Position	$412-3000$	1
TB1	Barrier Strip, 16-Position	$412-1600$	1
TB2	Blank Remote Interface Circuit Board	$519-0439$	1
---		1	

TABLE 6-45. LOW-PASS FILTER ASSEMBLY - 339-0022

REF. DES.	DESCRIPTION	PART NO.	QTY.
---	Transmission Line Insulator-Connector Assembly	$427-0004$	1
---	Output Directional Coupler Assembly	$959-0082-050$	1

TABLE 6-46. OUTPUT DIRECTIONAL COUPLER ASSEMBLY - 959-0082-050

REF. DES.	DESCRIPTION	PART NO.	QTY.
	Receptacle, BNC	$417-0016$	1
----	Resistor, $150 \mathrm{Ohm} \pm 5 \%, 2 \mathrm{~W}$	$130-1533$	1
---	Choke, $1.5 \mathrm{uH} \pm 10 \%, 580 \mathrm{~mA}$ Maximum	$360-0032$	1

TABLE 6-47. ACCESSORY PARTS KIT - 969-0016

REF. DES.	DESCRIPTION	PART NO.	QTY.
---	Battery, Cell, 3V, 190M	$350-2032$	1
----	FM-30T/FM-35T Binder and Manual	$959-0228-014$	1

TABLE 6-48. TUNING LINE ASSEMBLY, FM-30T - 959-0246-003

REF. DES.	DESCRIPTION	PART NO.	QTY.
----	Drive, Right Angle, Modified	$448-0002-001$	1
----	Tuning Bellows	$463-0095$	1

TABLE 6-49. TUNING LINE ASSEMBLY, FM-35T - 959-0246-006

REF. DES.	DESCRIPTION	PART NO.	QTY.
---	Drive, Right Angle, Modified	$448-0002-001$	1
---	Tuning Bellows	$463-0089$	1

SECTION VII DRAWINGS

7-1. INTRODUCTION.

7-2. This section provides schematic diagrams and assembly diagrams as indexed below for the FM-25T, FM-30T and FM-35T transmitters.

FIGURE	TITLE	MBE
7-1	OVERALL SCHEMATIC DIAGRAM, FM-25T TRANSMITTERS	$\begin{array}{r} \text { SB909-0025-200/ } \\ -380 \end{array}$
7-2	OVERALL SCHEMATIC DIAGRAM, FM-30T/FM-35T TRANSMITTERS	$\begin{array}{r} \text { SB909-0000-205/ } \\ -385, \\ 909-0035-205 / \\ -385 \end{array}$
7-3	SCHEMATIC DIAGRAM, METER MULITIPLIER CIRCUIT BOARD, FM-30T	SB919-0079
7-4	ASSEMBLY DIAGRAM, METER MUITIPLIER CIRCUIT BOARD, FM-30T	AB919-0079
7-5	SCHEMATIC DIAGRAM, METER MULITIPLIER CIRCUIT BOARD, FM-35T	SB919-0097
7-6	ASSEMBLY DIAGRAM, METER MULITIPLIER CIRCUIT BOARD, FM-35T	AB919-0097
7-7	SCHEMATIC DIAGRAM, PA CURRENT METER SHUNT	SB919-0048-011
7-8	ASSEMBLY DIAGRAM, PA CURRENT METER SHUNT CIRCUIT BOARD	AC919-0048-011
7-9	SCHEMATIC DIAGRAM, PA METERING CIRCUIT BOARD	SB919-0148
7-10	ASSEMBLY DIAGRAM, PA METERING CIRCUIT BOARD	AB919-0148
7-11	ASSEMBLY DIAGRAM, PLATE CURRENT METER	AB959-0293
7-12	SCHEMATIC DIAGRAM, METER PROTECTION CIRCUIT BOARD	SB919-0109-002
7-13	ASSEMBLY DIAGRAM, METER PROTECTION CIRCUIT BOARD	AB919-0109-002
7-14	SCHEMATIC DIAGRAM, MULTIMETER CIRCUIT BOARD	SB919-0049
7-15	ASSEMBLY DIAGRAM, MULTIMETER CIRCUIT BOARD	AB919-0049
7-16	SCHEMATIC DIAGRAM, OPTICALLY-COUPLED-RELAY	SB919-0096/-001
7-17	ASSEMBLY DIAGRAM, OPTICALLY-COUPLED-RELAY	AB919-0096/-001
7-18	ASSEMBLY DIAGRAM, DIRECTIONAL COUPLER	597-0096-506A
7-19	ASSEMBLY DIAGRAM, POWER STAT	597-0096-150
7-20	WIRING DIAGRAM, HUM NULL CIRCUIT	597-0096-101
7-21	ASSEMBLY DIAGRAM, INPUT MATCHING CIRCUIT BOARD	597-0220-428
7-22	SCHEMATIC DIAGRAM, REMOTE INTERFACE CIRCUIT BOARD	SB919-0439
7-23	ASSEMBLY DIAGRAM, REMOTE INTERFACE CIRCUIT BOARD	AC919-0439

FIGURE		TITLE $7-24$
	SCHEMATIC DIAGRAM, EXHAUST AIR TEMPERATURE	
$7-25$	CIRCUIT BOARD	NUBER SB919-0082
	ASSEMBLY DIAGRAM, EXHAUST AIR TEMPERATURE	AB919-0082
$7-26$	CIRCUIT BOARD	
	ASSEMBLY DIAGRAM, GRID CIRCUIT, FM-30T/FM-35T	$597-0096-417 /$
		$-418 /$
		$-419 /$
$7-27$	SCHEMATIC DIAGRAM, FXi 60 DIGITAL EXCITER	$-420 /$
	REMOTE INTERFACE WIRING, FM-25T/FM-30T/	-420 A
	FM-35T TRANSMITTERS	$597-0541-100$

+ +1

COPYRIGHT © 2004 BROADCAST ELECTRONICS, INC
597-0096-506A
FIGURE 7-18. DIRECTIONAL COUPLER ASSEMBLY DIAGRAM

COPYRIGHT © 1997 BROADCAST ELECTRONICS, INC
FIGURE 7-21. INPUT MATCHING CIRCUIT BOARD ASSEMBLY DIAGRAM

			COPYRIGHT（C） 19	broadcast ele	TRONICS，inc．
	$\begin{gathered} \text { DUN. BY } \\ K T \end{gathered}$	MATERIAL SEE B／M NO． 919－0082			
	DESIGNER（S）				
		Finish	$\begin{array}{rc} \hline \text { TITLE } & \text { ASM。 } \\ & \text { TEMP } \end{array}$	$\begin{aligned} & \text { CB EXHAU } \\ & \text { RATURE SE } \end{aligned}$	$\begin{aligned} & T \text { AIR } \\ & \text { VSOR } \end{aligned}$
tolerance（DECIMfl）u．o．s． XX $\pm .015$ ANGLES＋ 1° $\begin{array}{cc}. \times \pm .030 & . x X X \pm .005 \\ . x \times \pm+.015 & \text { ANGLES }+1^{\circ}\end{array}$	$\begin{array}{\|l\|} \hline \text { PROJ. LEADER } \\ \text { JML } 5-31-84 \\ \hline \text { MEG. } \end{array}$		TYPE SIZE A B $\mathbf{\text { DWG No }}$	$919-0082$	$\mathrm{C}_{\text {REU }}$
	MFG．	NEXT ASSY．	FM－3．5A／5A MODEL MUDS OPTION		SHEET 1 OF 1
\wedge					

1．U1 CENTERED IN 625 HOLE．
959－0048 SHIELD CELL ASM．
SEE PCB SCHEMATIC：SB919－0082
COUER WITH URETHANE CONFORMAL

der
 3

COATING INSTRUCTIONS：
－吉
$18-02$ SIDES SADED
（
\[\begin{aligned} \& 1) MASK BODY OF DEUICE U1 COMPLETLY 18 -0240
\& LETL
\& \begin{array}{l} U1 COMPL
TP2 1 INSE
ND MASK
NO \end{array}
\& 을욷뭉 \end{aligned} \]
\[\begin{aligned} \& APPLY ONE COAT OF 700-0126, SPRAY ON
\& 15 MINS. drying time.
\& 15 MINS. drying time.
\& N.
\& MO \end{aligned} \]
$$
\begin{aligned}
& \text { へ }
\end{aligned}
$$

FIGURE 7-26. ASSEMBLY DIAGRAM, GRID CIRCUIT, FM-25T/FM-30T/FM-35T (SHT 1 OF 5)

FIGURE 7-26. ASSEMBLY DIAGRAM, GRID CIRCUIT, FM-25T/FM-30T/FM-35T (SHT 2 OF 5)

597-0096-419
FIGURE 7-26. ASSEMBLY DIAGRAM, GRID CIRCUIT, FM-25T/FM-30T/FM-35T (SHT 3 OF 5)

COPYRIGHT © 2004 BROADCAST ELECTRONICS, INC

FIGURE 7-26. ASSEMBLY DIAGRAM, GRID CIRCUIT, FM-30T/FM-35T (SHT 4 OF 5)

TD TB104-3
TD TB105-3
TD TB106-3

NDTE:

1) INSTALL P17 [N THE FXI CDNTRDLLER IIRCUIT BUARD IN PDSITIDN 2-3.
2) $\square N$ T-SERIES, INSTALL PG $\square N$ THE TRANSMITTER CINTRDLLER CIRCUIT BDARD IN PDSITIDN 1-2

APPENDIX A MANUFACTURERS DATA

A-1. INTRODUCTION.

A-2. This appendix provides technical data associated with the operation and maintenance of the FM-25T, FM-30T and FM-35T transmitters. The information contained in this appendix is presented in the following order.
A. HV Circuit Breaker Trip Settings.
B. Service Bulletin, Furnas Contactor, Size 25 Amp.
C. Service Bulletin, Furnas Contactor, Size 40 Amp.
D. Service Bulletin, Superior Electric, Powerstat Model 216BU.
E. Operating Instructions and Parts List, Cincinnati Fan Company, PB-15 Pressure Blower.
F. Data Sheet, Regreasing Rolling Element Bearings, Mobil Oil Corporation.
G. Operation Bulletin, Electromatic, Three-Phase AC Line Voltage Monitor.
H. Technical Data Sheet, Eimac, 8990/4CX20000A Tetrode.
I. Technical Data Sheet, Eimac, 4CX20000C Tetrode.
J. Application Paper, Eimac, Extending Transmitter Tube Life.
K. Troubleshooting Guide, Pioneer Magnetics PM3329BP-5 Power Supply.
L. Schematic Diagram, Power Supply, Computer Products, NFN40-7610.

FM-25T HIGH VOLTAGE CIRCUIT BREAKER

BEI PART NUMBER: 341-0080

PART DESCRIPTION: CIRCUIT BREAKER, 175A, 600VAC, 3 POLE, S4 TYPE

PR211 ELECTRONIC TRIP SETTINGS:

ADJUSTMENT L:

Continuous current setting (long time pick-up) $=\mathbf{0 . 7} \times 250 \mathrm{~A}$ (Frame rating) $=175 \mathrm{~A}$.
Long time delay adjustment $=\mathbf{A}$ ($\mathrm{t} 1=3$ secs.)

ADJUSTMENT I:

Instantaneous current trip setting $=12 \times 250 \mathrm{~A}($ Frame rating $)=3000 \mathrm{~A}$.

Protective releases
Microprocessor based overcurrent relays, PR211
for S4, S5, S6 \& S7 breakers

Protective functions and set values

Protection wgaiest	Trip	Symbel	Sal vavas (matual aduatrart in atepe)
Overfoad	Long detsy	t.	$\begin{aligned} & I 1=0.4-0.5-0.6-0.7-0.8-0.9-0.95-1 \times \mathrm{in} \\ & 11=4 \text { curves } A \cdot B, C, D \end{aligned}$
Short-circut	Instartianeous adjustment	1	$13=1.5-2-4-6-8-10-12 \times$ in

Key
1 Dip-switch for tunction L setting
2 Dip-swtah for function 1 setring
3 Ratad current of current transformers
415 V dc . input for release functioning check
5 Function L trip time satting dp ewitoh
iu = Rated unirterrupled current of circuli-breaker
In = Aated current of current transformers
It = Current setting value for relay overiond prosection (L)
13 = Current setting value for relay instartaneous shoef-ofrcut protecton (i)
Rated and setting currents

Creutitreaker		Cuwart yanslomer hos	Funcriore	
	AUA		$\stackrel{\lim }{A(0, A-1 \times i m)}$	$\begin{gathered} 1031 \\ \text { A } 17.5-12 \times 1=1 \end{gathered}$
\$4	250	100	$40-100$	$150-1200$
		250	100-250	$375-3000$
85	400	300	$120-300$	$450-3600$
		400	$160-400$	$600-4800$
S6	8001800	600	240-600	900-7200
		800	$320-800$	$1200-9600$
57	1200	1000	$400-1000$	1000-12.000
		1200	$480-1200$	1800-14.400

File No. 41-GNB
Cat. No. or Cless Series 41NB
Size 25 Amp
Date APRIL, 1982

Hem	Part Name			Part No.
A	Contacts \& Spring, One complete pole			75NB4 1
8	Coil	60 Hz .	24 Volts	75D54760」
			120 Volts	75D54760F
			208-240 Volts	75D54760G
			440-480 Volts	75D54760H
			575-600 Volts	75D54760E

NOTE: When ordering replacement parts, give catalog number of control and part name and number.

14-GCF
October, 1982
Supersedes issue of June, 1982

Starter \& Contactors
$00,0,1,1 P, \& 13 / 4$

Class 14 \& 40
14BF, 14CF, 14DF, 14E,
40BF, 40CF, 40DF, 40EF

ITEM	Part name	PART NUMBER			
		Size 00	Size 0	Size 1	Sixe IP $213 / 4$
A	Contacts \& Spring, One Pole Interlock Pole	75BF14	75CF14	75DF14	75EF14
		75AF14	75AF14	75AF14	75AF14
B	Cross Arm (less contacts)	D28478001	D28478001	D28478001	D28478001
C	Cross Arm Springs	D24826001	D24826001	D24826001	D24826001
D	Contact Board Cover	D73062001	D73062001	D73062001	D73062001
E	Contact Board (less contacts)	D73116022	D73116022	D73116022	D73116022
F	Armature Spring Clip	D24817001	D24817001	D24817001	D24817001
G	Magnet and Armature	D25551001	D25551001	D255551001	D25551001
H	Contact Board Screw	D24827001	D24827001	D24827001	D24827001
J	Base	D74400001	D74400001	D74400001	D74400001
K	Coil $60 \mathrm{~Hz} .110-120 / 220-240$ V 50 Hz .	75D73070A	75D73070A	75D73070A	75073070A
	220-240/440-480 V 220 V	75D73070C	75D73070C	75D73070C	75D73070C
	$550-600 \mathrm{~V}$	75D73070E	75D73070E	75D73070E	75D73070E
M	Coil Spring Clip	D24815001	D24815001	D24815001	D24815001
	(Melting Alloy (std.) $\left\{\begin{array}{l}1 \\ 3\end{array}\right.$	48DC11AA2	48DC11AA2	48DC11AA2	48ECl IAA2
	Melting Alloy (std.) $\{3$ Pole	48DC31AA2	48DC31AA2	48DC31AA2	48EC31AA2
	Overload Relays $\left\{\right.$ Bimetal $\quad\left\{\begin{array}{l}1 \\ \text { Pole }\end{array}\right.$	48DC17AA2	48DC17AA2	48DC17AA2	48ECI7AA2
M	Overioad Relays Bimetal \{ 3 Pole	48DC37AA2	48DC37AA2	48DC37AA2	48EC37AA2
	(Amb. Comp. Bimetal $\{1$ Pole	48DC18AA2	48DC18AA2	48DC18AA2	48EC18AA
	Comp. Bimetal 3 Pole	48DC38AA2	48DC38AA2	48DC38AA2	48EC38AA:
N	Melting Alloy Overload Kit NO Contacts	48ACNO	48ACNO	48ACNO	48ACNO

NOTE: When ordering raplacement parts, give catalog number of control and part name and number.

116B/216B - 117B/217B L, N, and EN Series

(Multidecks use basic single unit parts)

* Units must be returned for repairs because cases and parts cannot be sold separately. For other parts, use basic unit parts list above.
** Shaft for single-deck open construction "U" units (such as 116BU) order BP51895-G1
*** Dial for single and ganged ($0-100$) open " U " and "EN" units order BP4356-G1. Dial and screen assembly for "T" units order DHP65385-G1. Screen for "VS" Series order DHP65385-G4.
\dagger Terminal Panel and brush supplied with coil.
$\dagger \dagger$ Panel housing assembly includes housing, switch, fuseholder with fuse, nameplate and appropriate cord, plug and receptacle. These items are standard and available from local hardware or electrical stores if required irdividually.

NOTE: Photo may not be exact replica of unit in your possession.

OPERATING \& MAINTENANCE INSTRUCTIONS AND PARTS LIST

for
"PB" \& "SPB" Pressure Blowers
"LM" Volume Blowers

CONTENTS

I Safety Information............................Page 2
II Receiving.....................................Page 2
III General Instailation Instructions Page 2
IV General Maintenance. Page 3
V V-belt Drives................................... Page 3
VI Bearing Maintenance Page 4
VII Warranty Page 4
VIII Ordering Replacement Parts............... Page 5
IX Trouble Shooting Page 5
X Assembly Drawings Page 6

DANGER

ALL FANS AND BLOWERS SHOWN HAVE ROTATING PARTS AND PINCH POINTS. SEVERE PERSONAL INJURY CAN RESULT IF OPERATED WITHOUT GUARDS. STAY AWAY FROM ROTATING EQUIPMENT UNLESS IT IS DISCONNECTED FROM ITS POWER SOURCE AND ALL ROTATING PARTS HAVE STOPPED MOVING.

READ ALL OPERATING INSTRUCTIONS CONTAINED HEREIN BEFORE INSTALLING EQUIPMENT.

DANGER

NO GUARANTEE OF ANY LEVEL OF SPARK RESISTANCE IS IMPLIED BY SPARK RESISTANT CONSTRUCTION. IT HAS BEEN DEMONSTRATED THAT ALUMINUM IMPELLERS RUBBING ON RUSTY STEEL MAY CAUSE HIGH INTENSITY SPARKS. AIR STREAM MATERIAL AND DEBRIS OR OTHER SYSTEM FACTORS MAY ALSO CAUSE SPARKS.

1. Rotating parts including shaft and V-belt drives must be properly guarded to prevent personal injury.
2. Electrical wiring must be accomplished by a qualified electrician in accordance with all applicable codes.
3. Care should be taken:

- Not to run fan above its safe speed (See Performance Tables in Sales Catalog or call CFV sales office).
- Not to operate in excessive temperatures (See Limitations in Sales Catalog or call CFV sales office).
- Not to operate in dangerous environments.
- Read all instructions carefully.

II RECEIVING

Recelving Inspection
When unit is received, inspect immediately for damaged or missing parts. Even though all units are carefully inspected and prepared for shipment at the factory, rough handling enroute may cause concealed damage or cause nuts, set screws, bolts or locking collars to work loose. Be certain all fasteners are tightened securely. Rotate wheel by hand to verity that it rotates freely and that there are no obstructions.

If concealed damage is found, call the freight carrier and ask for their Inspection Department. Fill out a concealed damage inspection report.

III GENERAL INSTALLATION INSTRUCTIONS

Foundations
Fan foundation must be flat, level and rigid. Where foundation is not completely flat, shims must be placed under fan support at each anchor bolt as
required. Bolting fan to an uneven foundation distorts alignment and causes vibration.

Structural steel foundations should be heavily crossbraced for load support.

OPERATION

Before Connecting Power

1. Inspect all fasteners and retighten if necessary:
a. Foundation bolts.
b. Set screws in fan and wheel and V-belt drive (See Table \#1 \& \#2).
c. Housing, bearing and motor mounting.
2. Access Doors should be tight and sealed.
3. Bearings should be checked for alignment and lubrication (See Bearing Maintenance).
4. Turn rotating assembly by hand to insure that it does not strike housing. If the wheel strikes the housing, the wheel may have moved on the shaft or the bearings may have shifted in transit. Correction must be made prior to start up.
5. Check motor to insure proper speed and electrical characteristics.
6. Check V-belt drive for alignment and correct belt tension.
7. After wiring, energize motor for 1 second to check for proper rotation.

Table \#1

TORQUE VALUES FOR TAPERED BUSHINGS		
	MINIMUM	
Bushing Size	RECOMMENDED TORQUE (INCH-LBS)	
H	Steel Parts	Alum. Parts
P	95	60
Q	192	80
R	350	155

Table \#2

SET SCREW TORQUE VALUES			
SET SCREW SIZE		MINIMUM REQUIRED TORQUE (INCH-LBS)	
Diameter \& No. of Threads/Inch	Hex Size Across Flats (Allen Wrench)	Steel Set Screw Into Steel Threads	Steel Set Screw Into Alum. Threads or Stainless Steel Set Into Stainless Steel Threads
$\begin{aligned} & 1 / 4-20 \\ & 5 / 16-18 \end{aligned}$	$\begin{aligned} & \hline 1 / 8^{\prime \prime} \\ & 5 / 32^{\prime \prime} \end{aligned}$	$\begin{array}{r} 65 \\ 165 \end{array}$	$\begin{array}{r} 65 \\ 100 \end{array}$
$\begin{aligned} & 3 / 8-16 \\ & 7 / 16-14 \end{aligned}$	$\begin{aligned} & \hline 3 / 16^{\prime \prime} \\ & 7 / 32^{\prime \prime} \end{aligned}$	$\begin{aligned} & 228 \\ & 348 \end{aligned}$	$\begin{aligned} & 155 \\ & 230 \end{aligned}$
$\begin{aligned} & \hline 1 / 2-13 \\ & 5 / 8-11 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 / 4^{\prime \prime} \\ & 5 / 16^{n} \\ & \hline \end{aligned}$	$\begin{array}{r} 504 \\ 1104 \end{array}$	$\begin{aligned} & 330 \\ & 700 \end{aligned}$

NOTE: If wheel set screws are loosened and/or wheel is removed from shaft, set screws musj be replaced. Set screws cannot be used more than once. Use knurled, cup point set screws with a locking patch.

IV GENERAL MAINTENANCE

CAUTION

Before any maintenance or service is performed, assure that unit is disconnected from power source to prevent accidental starting.

The key to good fan maintenance is a regular and systematic inspection of all fan parts. Severity of the application should determine frequency of inspection. The components requiring service are generally the moving parts which include bearings, fan propeller, belts, sheaves and motor.

Cast Aluminum \& Metal Parts

Cast aluminum and steel parts usually do not require maintenance during the life of the unit except painted metal surfaces that may require periodic repainting. In a severe, dirty operation, the wheel should be cleaned with a wire brush to prevent an accumulation of foreign matter that could result in fan unbalance. Atter cleaning wheel, inspect for possible cracks or excessive wear, which can cause unbalance. DO NOT operate a wheel that is cracked, chipped, has broken blades or excessive wear. NOTE: If wheel set screws are loosened and/or wheel is removed from shaft, set screws musi be replaced. Set screws cannot be used more than once. Betts on V-belt drive units require periodic inspection and replacement when worn. For multiple belt drives, belts should be replaced with matched sets.

Motor Maintenance

1. Disconnect power to motor.

2. Removing dust and dirt: Blow out open type motor windings with low pressure air to remove dust or dirt. Air pressure above 50 P.S.I. should not be used as high pressure may damage insulation and blow dirt under loosened tape. Dust accumulation can cause excessive insulation temperatures.
3. Lubrication: Consult the motor manufacturer for recommendations.
4. Motors must be stored under cover in a clean, dry, vibration-free location. Remove sufficient packaging material to allow circulation of air around motor. Maintain the temperature of the windings a few degrees above that of the surrounding air to protect against condensation. This may be accomplished by using space heaters, if supplied, or by any other safe, reliable method of heating. Measure and record monthly the ambient air temperature and winding temperature.
To prevent rusting of bearing parts, the rotor must be rotated at regular intervals (30 days) to assure these parts are will covered with oil or grease.

V V-BELT DRIVES

Care should be taken not to over tighten Vbelt drive. Excessive belt tension overloads fan and motor bearings. It is much less expensive to replace belts worn from slippage than to replace bearings damaged from excessive loading.

Fans shipped completely assembled have had V-belt drive aligned at the factory. Alignment should be rechecked before operation as a precaution due to handling during shipment.

1. Be sure sheaves are locked in position.
2. Key should be seated firmly in keyway.
3. Place straight edge or taut cord across faces of driving and driven sheaves to check alignment. The motor and fan shafts must be parallel with V-belts and at right angles to the shafts.
4. Start the fan. Check for proper rotation. Run fan at full speed. A slight bow should appear on slack side of belt. Disconnect power and adjust belt tension by adjusting motor on its sliding base. All belts must have some slack on one side.

A WORD OF CAUTION ABOUT MOTORS

Using your hand to test the running temperature of a motor can be a very painful experience:

Normal body temperature
Threshold of pain caused by heat
Average temperature of hot tap water
Average temperature of hot coffee
Normal operating temperature of a fully loaded electric motor, open type, $70^{\circ} \mathrm{F}$ ambient temperature
$98.6^{\circ} \mathrm{F}$
$120.0^{\circ} \mathrm{F}$
$140.0^{\circ} \mathrm{F}$
$180.0^{\circ} \mathrm{F}$
$174.0^{\circ} \mathrm{F}$

You cannot wash your hands in $140^{\circ} \mathrm{F}$ water!
You cannot stir a fresh cup of coffee with your finger!
You cannot place your hand on a motor that is operating properly without burning your hand!
5. If belts squeal at start up, they may be too loose.
6. When belts have had time to seat in the sheave grooves, then readjust belt tension.

V-belt drive assembly can be mounted as follows:

1. Clean motor and fan shafts. Be sure they are free from corrosive material. Clean bore of sheaves and coat with heavy oil for ease of shaft entry. Remove oil, grease, rust or burrs from sheaves.
2. Place fan sheave on fan shaft and motor sheave on its shaft. Do not pound sheaves on as this may damage bearings. Tighten sheaves in place per Table \# 1.
3. Move motor on slide base so belts can be placed in grooves of both sheaves without forcing. Do not roll belts or use a tool to force belts over the grooves.
4. Align fan and motor shafts so they are parallel. The belts should be at right angles to the shafts. A straight edge or taut cord placed across the face of the sheaves will aid in alignment.
5. Tighten belts by adjusting motor base. Correct tension gives the best drive efficiency. Excessive tension causes undue bearing pressure.
6. Start the fan and run it at full speed. Adjust belt tension until only a slight bow appears on the slack side of the belts. If slippage occurs, a squeal will be heard at start-up. Eliminate this squeal by disconnecting power and tightening up the belts.
7. Give belts a few days running time to become seated in sheave grooves, then readjust belt tension.
If the shatts become scratched or marked, carefully remove sharp edges and high spots such as burrs with fine emery cloth or honing stone. Avoid getting emery dust in the bearings.

Do not apply any bett dressing unless it is recommended by the drive manufacturer. V-belts are designed for frictional contact between the grooves and sides of the belts. Dressing will reduce this friction.

Belt tension on an adjustable pitch drive is obtained by moving the motor, not by changing the pitch diameter of the adjustable sheave.

vI FAN BEARING MAINTENANCE

Sealed BearIngs

Sealed for life bearings are pre-lubricated with the correct amount of manufacturer-approved ball bearing grease, and are designed for application where relubrication is not required.

Arrangement \#2 units feature two single-row deep groove bearings in a cast iron bearing bracket. Dirt
and grease guard seals are an integral part of the assembly. For high temperature applications the bearings are pre-lubricated with a high temperature grease.

Relubricatable Bearings

Relubricatable Type Bearings must be relubricated periodically to assure long life. The length of interval between greasing is dependent on the running speed and ambient conditions. The following table covers most situations and can be used as a guide.

Generally Recommended				
Relubrication Frequency in MONTHS				
Operating	Bore in Inches			
Speed (RPM)	$1 / 2$ to	$1-1 / 8$ to	$1-5 / 8$ to	2 to
To 500	1	$1-1 / 2$	$1-15 / 16$	$2-1 / 2$
$501-1000$	6	6	6	6
$1001-1500$	6	6	6	5
$1501-2000$	5	5	5	4
$2001-2500$	5	5	4	3
$2501-3000$	5	4	3	2
$3001-3500$	4	3	2	2
$3501-4000$	3	3	1	1
$4001-4500$	2	2	1	-
$4501-5000$	2	1	-	-

For normal operating conditions the grease should be lithium base and conform to the NLGl grade \#2 or \#3 consistency and be free of any chemical impurities such as free acid or free alkali, dust, rust, metal particles or abrasives.
If bearings are in a hostile environment such as temperatures above $120^{\circ} \mathrm{F}$, high moisture areas or contaminated areas, more frequent lubrication is required. Consult bearing manufacturer for recommendations.

For best results, bearings should be relubricated while in operation. NOTE: Due caution for personal safety must be observed when servicing rotating equipment. The grease should be pumped in slowly until a slight bead forms around the seals. This bead, in addition to acting as an indicator of adequate relubrication, provides additional protection against the entry of foreign matter.
By the time the slight-grease bead is formed, it will be noted that the temperature rise is in the neighborhood of $30^{\circ} \mathrm{F}$. If necessary to relubricate while the bearing is idle, contact bearing manufacturer for the maximum grease capacity for the various sizes of bearings.

VII WARRANTY

Cincinnati Fan \& Ventilator Company warrants products of its own manufacture against defects of material and workmanship under normal use and service
for a period of eighteen (18) months from date of shipment or twelve (12) months from date of installation, whichever occurs first. This warranty does not cover ordinary wear and tear, abuse, misuse, overloading, negligence, alteration or systems and/or materials not of Seller's manufacture. Expenses incurred by Buyer(s) in repairing or replacing any defective product will not be allowed except where authorized in writing and signed by an officer of the Seller.

The obligation of Seller under this warranty shall be limited to repairing or replacing F.O.B. Seller's plant, or allowing credit at Seller's option. This warranty is expressly in lieu of all other warranties expressed or implied including the warranties of merchantability and fitness for use and of all other obligations and liabilities of the Seller. The Buyer acknowledges that no other representations were made to him or relied upon him with respect to the quality or function of the products herein sold.

On equipment furnished by the Seller, but manufactured by others, such as motors, Seller extends the same warranty as Seller receives from the manufacturer thereof. Repairs for motors should be obtained from nearest authorized motor service station for the make of motor furnished. All motors used are products of well-known manufacturers with nationwide service facilities. Check the yellow pages of your telephone directory for the location of the nearest service shop.
Cincinnati Fan \& Ventilator Company assumes no responsibility for material returned to our plant without our prior written permission.

VIII ORDERING REPLACEMENT PARTS

Replacement or spare parts may be ordered through your local Cincinnati Fan representative. (Refer to drawings that begin on Page 6.) The following information should accompany parts orders:

1. Motor horsepower, frame size, motor speed, voltage, phase, cycle and enclosure. Motor manufacturer's model number from motor nameplate.
2. Fan Speed (if V -belt driven).
3. Fan arrangement number.
4. Fan serial AND model numbers from the FAN nameplate and a complete description of the part.
An adequate stock of repair parts is maintained where possible. If your fan is vital to production or to plant operation, it may be advisable to have all spare parts on hand to minimize the possibility of downtime.

IX FAN TROUBLE SHOOTING

In the event that trouble is experienced in the field, the following are the most common fan difficulties. These points should be checked in order to prevent needless delay and expense.

1. CAPACITY OR PRESSURE BELOW RATING

a. Incorrect direction of wheel rotation.
b. Speed too slow.
c. Dampers or variable inlet vanes not properly adjusted.
d. Poor fan inlet or outiet conditions (elbows, restrictions).
e. Air leaks in system.
f. Damaged wheel.
g. Total resistance of system higher than anticipated.
h. Wheel mounted backwards on shaft.
i. Fan not properly selected for a high temperature and/or high altitude application.
2. VIBRATION AND NOISE
a. Misalignment of bearings, coupling, wheel or V-belt drive.
b. Unstable foundation.
c. Foreign material in fan causing unbalance.
d. Worn bearings.
e. Damaged wheel or motor.
f. Broken or loose bolts and set screws.
g. Bent shaft.
h. Worn coupling.
i. Fan wheel or drive unbalanced.
j. 120 cycle magnetic hum due to electrical input. Check for high or unbalanced voltage.
k. Fan delivering more than rated capacity.
I. Loose dampers.
m . Speed too high or fan rotating in wrong direction.
n. Vibration transmitted to fan from some other source.

3. OVERHEATED BEARINGS

a. Check bearing lubrication.
b. Poor alignment.
c. Damaged wheel or drive.
d. Bent shaft.
e. Abnormal end thrust.
f. Dirt in bearings.
g. Excessive bell tension.
4. OVERLOAD ON MOTOR
a. Speed too high.
b. Blower over capacity due to existing system resistance being lower than original rating.
c. Specific gravity or density of gas above design value.
d. Packing too tight or defective (on fans with stuffing box).
e. Wrong direction of wheel rotation.
f. Shaft bent.
g. Poor alignment.
h. Wheel wedging or binding on inlet bell.
i. Bearings improperly lubricated.
j. Motor improperly wired.
k. Defective motor. Motor must be tested by motor manufacturer's authorized repair shop.

HOUSING WHEEL COMPONENTS

All arrangements

* 1. Housing, inlet side.
* 2. Wheel (PB or LM type).
* 3. Housing, drive side.

4. Drive side plate (if required).
5. Inlet side plate (if required).

* NOTE: Rotation determined by viewing blower from drive side, not looking into inlet.

BASE ARRANGEMENT COMPONENTS

Arrangement 4

1. Angle bracket (if required).
2. Bottom base.
3. Motor.
4. Riser pad (if required).

Arrangement 9-1

1. Spacer ring.
2. Shaft/bearing assembly.
3. Fan sheave.
4. Belt(s).
5. Bearing base.
6. Motor slide base.
7. Motor.
8. Motor sheave.
9. Belt guard.

Arrangement 9-2

1. Shaft/bearing assembly.
2. Fan sheave
3. Belt(s).
4. Belt guard.
5. Motor sheave.
6. Motor.
7. Motor slide base.
8. Upright base.
9. Sub base.

10. Upright base.
11. Shatt/bearing assembly.

Regreasing Rolling Element Bearings

Rolling element bearings need to be relubricated from time to time to replace grease that has (1) deteriorated, (2) leaked away, or (3) become contaminated. The frequency of relubrication depends upon the speed, size and type of the bearing, the operating temperature, and environmental conditions.

The bearing housing should not be over packed with grease. Too much grease can create excessive pressure or rupture the seal. In either case, the bearing will overheat causing failure. The following methods are recommended for regreasing rolling element bearings.

RELUBRICATING FREQUENCY

The frequency of relubrication depends upon the speed, size and type of bearing and operating temperature or environmental conditions.

Speed and Size

Generally, the smaller the bearing and faster the speed, the more frequent the interval for relubrication with grease. Larger, slower speed bearings require less frequent relubrication.

Type

Different types of bearings may also require different relubrication frequencies, i.e.

Radial ball
Cylindrical roller
Thrust-ball and roller

Base interval

5 times as frequent
10 times as frequent

Operating Temperature

When rolling element bearings operate above $65^{\circ} \mathrm{C}\left(150^{\circ} \mathrm{F}\right)$, the frequency of relubrication must be increased. For example, a bearing operating at $120^{\circ} \mathrm{C}\left(250^{\circ} \mathrm{F}\right)$ will require regreasing 10 times as often as when operating below $65^{\circ} \mathrm{C}\left(150^{\circ} \mathrm{F}\right)$.

Follow the recommended frequency on your lubrication schedule.

Environmental Conditions

Where bearings are subject to contamination, more frequent relubrication may be necessary.

Report any unusual conditions such as hot, noisy, vibrating or leaking bearings.

GREASE ADDITION BETWEEN GREASE FLUSHING INTERVALS

Many rolling element bearings require the addition of small
quantities of grease between grease flushing intervals. This is necessary to replace grease lost through seals or other leakage.

If seals are in good condition, the quantity of grease needed may be small and infrequent.

1. Check the amount of grease in the bearing - remove fitting or relief plug to see if excess grease comes out.
2. Check bearing seals for excessive leakage.
3. Apply only a few "shots" of grease at a time. DO NOT OVER LUBRICATE.

GREASE FLUSHING

The following methods are recommended for grease flushing rolling element bearings.

Bearing Equipped with Fitting and Drain

1. Remove lower drain plug. Clean out any hard grease.
2. Wipe grease fitting clean.
3. Apply new grease in fitting until the old grease has been purged out through the drain and new grease begins to appear. It is preferable to do this while the machine is running, if safe and practical.
4. With drain plug removed, allow machine to run at operating temperature. This allows the grease to expand, forcing the excess out the drain relieving the internal pressure. The excess grease will stop draining when normal pressure in the bearing is obtained - 10 to 30 minutes.
5. Clean and replace the drain plug.

Element Bearings

Bearing with Fitting, but no Drain

This arrangement requires more caution:

1. Remove fitting while equipment is running at operating temperature to allow any purging of excess grease in the bearing
2. Clean and repiace fitting. Pump a limited quantity of grease into bearing to avoid rupturing the grease seal.
3. Remove fitting and allow equipment to run at operating temperature for several minutes to purge excess grease. If no grease comes out of hole, bearing was apparently quite dry - repeat steps 2 and 3 until excess grease comes out.
4. Replace grease fitting

Bearing with Relief Type Fitting and no Drain

1. Clean fitting and pump grease into bearing until grease comes out of relief hole.
2. If, after considerable pumping, grease does not come out of relief hole, relief slot may be plugged. Remove fitting and clean relief slot or use a new fitting. Repeat step 1.
3. Run equipment at operating temperature and check for excess grease at the relief hole.

Precautions

Clean up all excess grease from bearing, machine and floor.
The above procedures should be closely followed - especially where electric motor bearings are concerned.

There may be instances where hard soap deposits make it necessary to flush the bearing housing with hot oil in the grease gun. Be sure to purge all the oil out of the bearing with new grease before operating.

It may be impractical to grease flush very large bearings, such as in paper machines. Follow manufacturer's instructions or "trial and error" to determine the amount of grease to add to the bearing.

Product Description

3-phase or 3-phase+neutral line voltage monitoring relay for phase sequence, phase loss, asymmetry, over and under voltage (separately adjustable set points) with built-in time delay function.

Supply ranges from 208 to 690 VAC covered by three multivoltage relays <ranges over 415 VAC only on the DIN-rail housing).

- TRMS 3-phase over and under voltage, phase sequence, phase loss and asymmetry monitoring relay
- Detect when all 3 phases are present and have the correct sequence
- Detect if all the 3-phase-phase or phase-neutral voltages are within the set limits
- Detect if asymmetry is below set value
- Separately adjustable setpoints
- Separately adjustable delay functions (0.1 to 30 s)
- Output 2×8 A relay SPDT NE
- For mounting on DIN-rail in accordance with DIN/EN 50022 (DPC01) or plug-in module (PPC01)
- 45 mm Euronorm housing (DPC01) or 36 mm plug-in module (PPC01)
- LED indication for relays, alarm and power supply ON

Type Selection

Mounting	Output	Frequency	208 to 240 VAC	380 to 415 VAC	380 to 480 VAC	600 to 690 VAC
DIN-rail	$2 \times$ SPDT	$50-60 \mathrm{~Hz}$	DPC 01 D M 23		DPC 01 D M48	DPC 01 D M69
DIN-rail	$2 \times$ SPOT	$50-400 \mathrm{~Hz}$	DPC 01 D M23 400HZ	DPC 01 D M48 400HZ		DPC 01 D M69 440H
Pug-in	$2 \times$ SPDT	$50-60 \mathrm{~Hz}$	PPC 01 D M23	PPC 01 D M48		

Input Specifications

Output Specifications

Output Rated insulation voltage	$2 \times$ SPDT relays N.E. 250 VAC
Contact ratings (AgSnO_{3})	μ
Resistive loads AC 1	BA 9250 VAC
DC 12	5 A 824 VDC
Smal inductive loads AC 15	2.5 A 9250 VAC
DC 13	$2.5 \mathrm{~A} \Theta 24 \mathrm{VDC}$
Mechanical life	$\geq 30 \times 10^{6}$ operations
Electrical life	$\geq 10^{\circ}$ operations (at B A $, 250 \mathrm{~V}, \cos \mathrm{v}=1$)
Operating frequency	≤ 7200 operations/h
Dielectric strength	
Dielectric voltage	$\geq 2 \mathrm{kVAC}$ (mms)
Ratod impulse withstand volt,	$4 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$

Supply Specifications

Power supply
Rated operational voltage
through terminals：
L1，L2，L3，N（DPC01）
$5,6,7,11$（PPC01）
M23－Delta Voltage：
DPC01 M48－Delta Voltage：
DPC01 M48－Star Voltage：
PPC01 M48－Delta Voltage：
PPC01 M48－Star Voltage：
M48 400 HZ －Delta Voltage：
M48 400 HZ －Star Voitage：
M69－Delta Voltage：
M69－Star Voltage：

Overvoltage cat．IIII （IEC 60664，IEC 6003B）

208 to $240 \mathrm{NAC} .15 \% ; 45$ to 65 Hz 380 to $480 \mathrm{NFC}=15 \% / 45$ to 65 Hz $22010277 \mathrm{NC}=15 \%, 45$ to 6512 350 to $415 \mathrm{WCC}+15 \% 45$ to 65 F 女 $22010240 \mathrm{NFC}=15 \%, 45$ to 65 F 配 380 to $415 \mathrm{NCC}=15 \% / 45$ to $440 \mathrm{H} / \mathrm{z}$ $22010240 \mathrm{NFC}=15 \% / 451049 \mathrm{CHz}$
 347 to $4000 \mathrm{FCC} 215 \% / 45$ to 65 H 配
Rated operational power
M48
M69

9 VA 9 A 230 VAC， 50 Hz
$13 \mathrm{VA} 9 \Delta 400 \mathrm{VAC}, 50 \mathrm{~Hz}$ $21 \mathrm{VA} 9 \mathrm{~B} 600 \mathrm{VAC}, 50 \mathrm{~Hz}$ Supplied by L2 and L3 for the DIN－rail versions and by L1 and L2 for the Plug－in versions

General Specifications

Power ON delay	$1 \mathrm{~s} \pm 0.5 \mathrm{~s}$ or $6 \mathrm{~s} \pm 0.5 \mathrm{~s}$
Accuracy	$(15 \mathrm{~min}$ warm－up time）
Temperature drift	± 1000 ppmmi＇
Delay ON alarm	$\pm 10 \%$ on set value $\pm 50 \mathrm{~ms}$
Repeatability	$\pm 0.5 \%$ on full－scale

General Specifications（cont．）

Reaction time	
Incorrect phase sequence	
or total phase loss	＜ 200 ms
Voltage level	（input signal variation from
	-20% to $+20 \%$ or from
	＋20\％to－20\％of set value）
Asymmetry level	
Alarm ON delay：	＜ 200 ms （delay＜ 0.1 s）
Alarm OFF delay：	＜ 200 ms （delay＜ 0.1 s ）
Indication for	
Power supply ON	LED，green
Alarm ON	LED，red（flashing 2 Hz
	during delay time）
Output relays ON	$2 \times$ LED，yellow
Environment	（EN 60529）
Degree of protection	｜P 20
Polution degree	3 （DPC01）， 2 （PPC01）
Operating temperature	
$¢$ Max．voltage， 50 Hz	-20 to $+60^{\circ} \mathrm{C}$, P．H．$<95 \%$
（4）Max．voltage， 50 Hz	-20 to $+60^{\circ} \mathrm{C}$ ， ． P ．H．$<95 \%$
Storage temperature	-30 to $+80^{\circ} \mathrm{C}$, P．H．$<95 \%$
Housing dimensions	
DIN－rail versions	$45 \times 80 \times 99.5 \mathrm{~mm}$
Plug－in versions	$36 \times 80 \times 87 \mathrm{~mm}$
Weight	Approx． 220 g
Screw terminals	（DPC01）
Tightening torque	Max． 0.5 Nm
Approvals	UL．CSA GL．（DPC01 only）
CE Marking	Yes
EMC	Electromagnetic Compatibility
Immunity	According to EN 61000－6－2
Emissions	According to EN 50081－1

Mode of Operation

Connected to the 3 phases （and neutral）DPC01 and PPC01 operate when all 3 phases are present at the same time and the phase sequence is correct．It can be decided whether to monitor upper and lower voltage level of each phase or ther asym－ metry and tolerance．

Asymmetry is defined as：

$$
\frac{\max \left|\Delta V_{p-p \mid}\right|}{\text { nom. voltage }}
$$

when measuring phase－ phase voltages and as：

$$
\begin{aligned}
& \max \Delta V_{1+n-N} \\
& \text { nom. veltage }
\end{aligned}
$$

when measuring phase－neu－ tral voltages．

> Tolerance is defined as:
> max Inom. voltage- Vonal
when measuring phase－ phase voltages and as：

$$
\frac{\text { max inom. voitage, }-V_{p+t}}{\text { nom. voltage }}
$$

when messuring phase－neu－ tral voltages．

Voltage level monitoring：

 if one or more phase－phase or phase－neutral voltage exceed the upper set level or drop below the lower set level，the red LED starts flashing 2 Hz and the respective output relay releases atter the set time period．
Asymmetry and tolerance monitoring：
 If one or more phase－phase or phase－neutral voltage exceed the set levels the red LED starts flashing 2 Hz and the respective output relay releas－ es after the set time period．
 For both functions，if the phase sequence is wrong or one phase is lost，both cutput relays release immediately． Only 200 ms delay occurs． The falure is indicated by the red LED flashing 5 Hz during the alarm condition．

Example 1

（Mains monitoring－over and under phase－phase voltage） The relay monitors over and under voltage，phase loss and corect phase sequence．

Example 2
（Motor monitoning－starting and operating load－asym－ metry and tolerance of phase－neutral voltage）
DPC01 and PPC01 ensure correct starting and operat－ ing conditions．They monitor the voltage level，phase sequence（correct direction of the motor rotation）and asymmetry．

Frequent failures are fuse blowing and incorrect voit－ age level．In case of fuse blowing the motor regener－ ates a voltage in the inter－ rupted phase．The relay detects the failure and reacts due to excessive imbalance among the phases．

Function/Range/Level/Time Setting

Adjust the input range setting the DIP-switches 3 and 4. Select the desired function setting the DIP-switches 5 and 6 as shown on the left. To access the DIP-switches open the plastic cover using a screwdriver as shown below.

Centre knobs:

Setting of upper and lower level or setting of asymmetry and tolerance on relative scale.

Lower knobs: Setting of delay on alarm time on absolute scale:	Power-ON delay
	ON: $6 \mathrm{~s}=0.5 \mathrm{~s}$
	OFF: $1 \mathrm{~s} \pm 0.5 \mathrm{~s}$

0.1 to 30 s .

Monitoring

OFF: Phase-Phase voltages

ON: Phase-Neutral voltages

Measuring range				
SW3	ON	ON	OFF	OFF
SW4	ON	OFF	ON	OFF
M23 Ph-Ph Voltage	208 VAC	220 VAC	230 VAC	240 VAC
M48 Ph-Ph Voltage	380 VAC	400 VAC	415 VAC	480 VAC DPC01 only
M48 Ph-N Voltage	220 VAC	230 VAC	240 VAC	277 VAC
DPC01OM				
Ph-Ph Volt.	600 VAC	600 VAC	690 VAC	690 VAC
DPCD1DM 69 Ph-N Volt.	347 VAC	347 VAC	400 VAC	400 VAC

Output

ON: $2 \times$ SPDT relays
OFF: $1 \times$ DPDT relay

- Function

ON: Asymmetry and tolerance monitoring
OFF: Over and undervoltage monitoring

Wiring Diagrams

Operation Diagrams (cont.)

Over and undervoltage monitoring

Asymmetry and tolerance monitoring

Relay 1 Asymmetry $1066 \sqrt{T}$

Relay 2 Tolerance, Iatas

TECHNICAL DATA

The EIMAC 8990/4CX20,000A is a ceramic/metal power tetrode intended for use in audio or radio-frequency applications. It features a type of internal mechanical structure which results in high if operating efficiency. Low rf losses in this structure permit operation at full ratings up to 110 MHz .

The 8990/4CX20,000A has a gain of over 18 dB in FM broadcast service, and is also recommended for radio-frequency linear power amplifier service, and for VHF television linear amplifier service. The anode is rated for 20 kW of dissipation with forced-air cooling and incorporates a highly efficient cooler of new design.

The 8990A is recommended for high-level, plate modulated amplifier service.

GENERAL CHARACTERISTICS'

ELECTRICAL

Filament: Thoriated Tungsten	
Voltage:.	$10.0 \pm 0.5 \mathrm{~V}$
Current, at 10.0 volts.	140 A
Amplification Factor, average	
Grid to Screen .	6.7

Direct Interelectrode Capacitances (cathode grounded): ${ }^{2}$
Cin.. 190 pF
Cout ... 23.5 pF
Cgp... 1.5 pF
Direct Interelectrode Capacitances (grid and screen grounded): ${ }^{2}$
Cin.. 83 pF

Frequency of Maximum Ratings (CW) .. 110 MHz

1. Characteristics and operating values are based on performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted betore using this information for final equipment design.
2. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

MECHANICAL

Maximum Overall Dimensions:
Length... . . 9.840 in; 24.99 cm
Diameter. $8.800 \mathrm{in} ; 22.35 \mathrm{~cm}$
Net Weight (Approximate) . $14.0 \mathrm{lbs} ; 6.35 \mathrm{~kg}$
Operating Position.. . Axis vertical, base up or down
Cooling...
Operating Temperature, maximum
Ceramic/Metal Seals and Anode Core
250 C
Base
Special, concentric
Recommended Air System Socket . SK-320
Recommended Air Chimney .. . SK-326

RADIO FREQUENCY POWER AMPLIFIER OR OSCILLATOR

Class C Telegraphy or FM
(Key-Down Conditions)
ABSOLUTE MAXIMUM RATINGS

DC PLATE VOLTAGE	10,000	VOLTS
DC SCREEN VOLTAGE .	2,000	VOLTS
DC PLATE CURRENT	5.0	AMPERES
PLATE DISSIPATION.	20,000	WATTS
SCREEN DISSIPATION	450	watts
GRID DISSIPATION.	200	Watts

TYPICAL OPERATION (frequencies to 30 MHz)

Plate Voltage	7.5	9.0	kVdc
Screen Voltage	750	900	Vdc
Grid Voltage.	-200	-250	Vdc
Plate Current	3.68	4.01	Adc
Screen Current ${ }^{1}$	208	222	mAdc
Grid Current ${ }^{1}$	91	88	mAdc
Peak rf Grid Voltage ${ }^{1}$	265	300	\checkmark
Calculated Drive Power.	24.1	26.4	W
Plate Dissipation ${ }^{1}$	5.84	7.93	kW
Plate Output Power'	21.8	28.2	kW
Load Impedance	1062	1136	Ω
${ }^{1}$ Approximate value			

TYPICAL OPERATION, COMMERCIAL FM SERVICE
(measured values at frequency shown, in EIMAC CV-2200 cavity amplifier)

Frequency of Operation	88.3	107.7	MHz
Plate Voltage	9.0	9.0	kVdc
Screen Voltage	800	800	Vac
Grid Voltage.	-400	-300	Vdc
Plate Current	4.08	4.15	Adc
Screen Current	200	200	mAdc
Grid Current	40	38	mAdc
Drive Power	325	360	W
Useful Power Output ${ }^{1}$.	28.75	28.9	kW
Efficiency	80.5	77.4	\%
Gain	19.5	19.0	dB

${ }^{1}$ Delivered to the load

PLATE MODULATED RADIO FREQUENCY POWER AMPLIFIER 8990A RECOMMENDED

GRID DRIVEN Class C Telephony (Carrier Conditions)

ABSOLUTE MAXIMUM RATINGS

DC PLATE VOLTAGE	8,000 VOLTS	Screen Current ${ }^{1}$	220 madc
DC SCREEN VOLTAGE	2,000 VOLTS	Grid Current ${ }^{1}$	108 mAdc
DC GRID VOLTAGE	-1,000 VOLTS	Calculated Driving Power.	35 W
DC PLATE CURRENT	5 AMPERES	Plate Impedance...	845Ω
PLATE DISSIPATION.	13.5 KILOWATTS	Plate Output Power .	29 kW
SCREEN DISSIPATION	450 WATTS	Plate Dissipation	6880 W
GRID DISSIPATION	200 WATTS	${ }^{1}$ Approximate	

AUDIO FREQUENCY POWER AMPLIFIER OR MODULATOR

GRID DRIVEN, Class AB1

(sinusoidal wave)

TYPICAL OPERATION (2 tubes)

Plate Voltage	7,800	7,800	7800	Vdc
Screen Voltage	500	750	1500	Vdc
Grid Voltage ${ }^{1}$	-70	-125	-250	Vdc
Zero Signal Plate Current.	0.75	0.75	1.0	Adc
Max. Signal Plate Current.	3.4	5.2	9.2	Adc
Max. Signal Screen Current ${ }^{2}$	90	220	600	mAdc
Peak Grid Voltage ${ }^{2}$	65	115	200	v
Max. Signal Plate Dissipation ${ }^{3}$	6	7	13.5	kW
Plate Output Power...	14.5	26	44	kW
Load Impedance p/p.	6,300	3,500	1600	Ω
${ }^{1}$ Adjust for specified zero-sign ${ }^{2}$ Approximate value ${ }^{3}$ Per tube	late cur			

Abstract

TYPICAL OPERATION values are obtained by calculations from published characteristic curves. To obtain the specified plate current at the specified bias, screen, and plate voltages, adjustment of the rif grid voltage is assumed. If this procedure is followed, there will be little variation in output power when the tube is replaced, even though there may be some variation in grid and screen currents. The grid and screen currents which occur when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no performance degradation providing the circuit maintains the correct voltage in the presence of the current variations. If grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to produce the required bias voltage when the correct rf grid voltage is applied.

APPLICATION

MOUNTING - The 8990 must be operated with its axis vertical. The base of the tube may be up or down at the convenience of the circuit designer.

SOCKET \& CHIMNEY - The EIMAC air-system socket SK-320 and air chimney SK-326 are designed especially for use with the 8990 . The use of the recommended air flow through this socket provides effective forced-air cooling of the base, with air then guided through the anode cooling fins by the air chimney.

COOLING - The maximum temperature rating for the external surfaces of the tube is $250^{\circ} \mathrm{C}$, and sufficient forced-air cooling must be used in all applications to keep the temperature of the anode (at the base of the cooling fins) and the temperature of the ceramic/metal seals comfortably below the rated maximum.

The cooling characteristics of the anode are shown in the attached graph, for power levels from 7.5 kW to 20 kW dissipation. The designer is cautioned to keep in mind that is ABSOLUTE data, with pure dc power, with no safety factors added, and the pressure drop figures make no allowance for losses in filters, ducting, and the like.

It is considered good engineering practice to design for a maximum anode core temperature of $225^{\circ} \mathrm{C}$, and temperature sensitive paints are available for checking base and seal temperatures before any design is finalized. It is also considered good practice to add a 15\% safety factor to the indicated airflow, and allow for variables such as dirty air filters, if seal heating at VHF, and the fact that the anode coolings fins may not be clean if the tube has been in service for some length of time. Special attention is required in cooling the center of the stem (base), by means of special directors or some other provision. An air interlock system should be incorporated into the design to automatically remove all voltages from the tube in case of even partial failure of the tube cooling air.

Air flow must be applied before or simultaneously with the application of power, including the tube filament, and should normally be maintained for a short period of time after all power is removed to allowed for tube cooldown.

FILAMENT OPERATION - The rated nominal filament voltage for the 8990 is 10.0 volts, as measured at the socket or tube base. Variation in voltage should be maintained within plus or minus five percent. During application of filament voltage the inrush current should be limited to no more than twice normal current.

The peak emission capability at nominal filament voltage is normally more than that required for communication service. A small decrease in filament temperature due to reduction in filament voltage can increase tube life by a substantial percentage. It is good practice to determine the nominal filament voltage for a particular application that will not adversely affect equipment operation. This is done by measuring some important parameter of performance (such as plate current, power output, or distortion) while filament voltage is reduced. At some point in filament voltage there will be a noticeable change in the operating parameter being monitored, and the operating filament voltage must be slightly higher than the level at which deterioration was noted. When filament voltage is to be reduced in this manner it should be regulated and held to plus or minus one percent, and the actual operating value should be checked periodically to maintain proper operation.
ELECTRODE DISSIPATION RATINGS - The maximum dissipation ratings for the 8990 must be respected to avoid damage to the tube. An exception is the plate dissipation which may be permitted to rise above the rated maximum during brief periods (10 seconds maximum) such as may occur during tuning
GRID OPERATION - The 8990 control grid has a maximum dissipation rating of 200 watts. Precautions should be observed to avoid exceeding this rating. The grid bias and driving power should normally be kept near the values shown in the TYPICAL OPERATION section of the data sheet whenever possible.
SCREEN OPERATION - The power dissipated by the screen of the 8990 must not exceed 450 watts. Screen dissipation, in cases where there is no ac applied to the screen, is the simple product of the screen voltage and the screen current. If the screen voltage is modulated, the screen dissipation will depend upon loading, driving power, and carrier screen voltage.

Screen dissipation is likely to rise to excessive values when the plate voltage, bias voltage, or plate load are removed with the filament and screen voltages applied. Suitable protective means must be provided to limit the screen dissipation to 450 watts in the event of circuit failure. Energy limiting circuitry (which will activate if there is a fault condition) and spark gap over-voltage protection are recommended as good engineering practice.

The 8990 may exhibit reversed (negative) screen current under some operating conditions.

The screen supply voltage must be maintained constant for any values of negative and positive screen current which may be encountered. Dangerously high plate current may flow if the screen power supply exhibits a rising voltage characteristic with negative screen current. Stabilization may be accomplished with a bleeder resistor connected from screen to cathode, to assure that net screen supply current is always positive. This is absolutely essential if a series electronic regulator is employed.

FAULT PROTECTION - In addition to normal plate overcurrent interlock and screen current interlock it is good practice to protect the tube from internal damage which could result from a plate arc at high voltage. In all cases some protective resistance, 10 to 50 ohms, should be used in series with the tube anode to absorb power supply stored energy in case a tube arc should occur. If power supply stored energy is high some form of electronic crowbar which will discharge power supply capacitors in a few microseconds following indication of start of a tube arc is recommended.
HIGH VOLTAGE - Normal operating voltages used with the 8990 are deadly and the equipment must be designed properly and operating precautions must be followed. All equipment must be designed so that no one can come into contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage capacitors whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications. such as stray capacitance to the chassis. capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube as the key component involved the industry and Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminate any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal. controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data or test specifications, normally are taken in accordance with Standard RS-191

The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

SPECIAL APPLICATIONS - If it is desired to operate this tube under conditions widely different from those listed here, write to Application Engineering. Power Grid Tube Division, EIMAC Division of Varian. 301 Industrial Way, San Carlos, CA 94070 for recommendations.

OPERATING HAZARDS

PROPER USE AND SAFE OPERATING PRACTICES WITH RESPECTTO POWERTUBES ARE THE RESPONSIBILITY OF EQUIPMENT MANUFACTURERS AND USERS OF SUCH TUBES. ALL PERSONS WHO WORK WITH OR ARE EXPOSED TO POWER TUBES OR EQUIPMENT WHICH UTILIZES SUCH TUBES MUST TAKE PRECAUTIONS TO PROTECT THEMSELVES AGAINST POSSIBLE SERIOUS BODILY INJURY DO NOT BE CARELESS AROUND SUCH PRODUCTS.
The operation of power tubes involves one or more of the following hazards, any one of which, in the absence of safe operating practices and precautions, could result in serious harm to personnel:
a. HIGH VOLTAGE - Normal operating voltages can be deadly.
b. RF RADIATION - Exposure to strong rf fields should be avoided, even at relatively low frequencies. The dangers of if radiation are more severe at UHF and microwave frequencies and can cause serious bodily and eye injuries. CARDIAC PACEMAKERS MAY BE AFFECTED.
c. X-RAY RADIATION - High voltage tubes can produce dangerous and possibly fatal x-rays.
d. BERYLLIUM OXIDE POISONING - Dust or fumes from BeO ceramics used as thermal links with some conduction-cooled power tubes are highly toxic and can cause serious injury or death.
e. GLASS EXPLOSION - Many electron tubes have glass envelopes. Breaking the glass can cause an implosion, which will result in an explosive scattering of glass particles. Handle glass tubes carefully.
f. HOT WATER - Water used to cool tubes may reach scaiding temperatures. Touching or rupture of the cooling system can cause serious burns.
g. HOT SURFACES - Surfaces of air-cooled radiators and other parts of tubes can reach temperatures of several hundred degrees centigrade and cause serious burns if touched.

Please review the detailed operating hazards sheet enclosed with each tube or request a copy from the address

EIMAC 8990 CONSTANT CURRENT CHARACTERISTICS
GROUNDED CATHODE
Screen Voltage $=750$ Volts LEGEND:
- Plate Current (Amperes) -. Screen Current (Ampereses)

simati 8990/4CX20,000A,8990A

The EIMAC $4 C \times 20,000 C$ is a ceramic/metal power tetrode intended for use in audio or rf applications. It features a type of internal mechanical structure which results in high rf operating efficiency. Low rf losses in this structure permit operation at full ratings to 110 MHz .

The $4 \mathrm{C} \times 20,000 \mathrm{C}$ has a gain of over 18 dB in FM broadcast service, and is also recommended for rf linear power amplifier service. The anode is rated for 20 kW of dissipation with forced-air cooling and incorporates a highly efficient cooler of new design.

GENERAL CHARACTERISTICS1

ELECTRICAL

Filament: Thoriated Tungsten Mesh
Voltage $10.0 \pm 0.5 \mathrm{~V}$
Current, at 10.0 volts -140 A
Amplification Factor, average
Grid to Screen . 6.7
Direct Interelectrode Capacitances (cathode grounded) ${ }^{2}$

Cout
22.4 pF

Direct Interelectrode Capacitances (grids grounded) ${ }^{2}$
Cin
0.6 pF

90 pF
Cpk
22.9 pF
0.08

Maximum Frequency for Full Ratings (CW)
110 MHz

1. Characteristics and operating values are based on performance tests. These figures may change without notice as the result of additional data or product refinement. Varian EIMAC should be consulted before using this information for final equipment design.
2. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

MECHANICAL
Maximum Overall Dimensions:
Length . $9.84 \mathrm{In} ; 24.99 \mathrm{~cm}$
Diameter . 8.86 In 22.50 cm
Net Weight (approximate) . 14.0 Lbs ; 6.35 kg
Operating Position . Vertical, Base Up or Down

Operating Temperature, Absolute Maximum, Ceramic/Metal Seals and Anode Core $250^{\circ} \mathrm{C}$ Base

Special, Coaxial

Recommended Air-System Socket (for VHF Applications) EIMAC SK-360
Available Screen Grid Bypass Capacitor Kit for SK-360 (8000 pF © DCWV = 5000) . . . EIMAC SK-355
Recommended Air Chimney (Use with SK-320 or SK-360) \quad.
Available Anode Contact Connector Clip . EIMAC ACC-3

RADIO FREQUENCY POWER AMPLIFIER
Class C FM (key down conditions)
ABSOLUTE MAXIMUM RATINGS

DC PLATE VOLTAGE	.	\cdot	12.5
KILOVOLTS			
DC SCREEN VOLTAGE	\cdot	\cdot	2.0
KILOVOLTS			
DC PLATE CURRENT	\cdot	\cdot	5.0
AMPERES			
PLATE DISSIPATION	\cdot	\cdot	20
KILOWATTS			
SCREEN DISSIPATION	.	.	450
GRID DISSIPATION	.	\cdot	200
WATTS			

* Will vary from tube to tube
\# Delivered to the load

TYPICAL OPERATION (measured data at 107.1 MHz)

Plate Voltage	9.0	10.0	12.0	kVdc
Screen Voltage	800	1000	1000	Vdc
Grid Voltage	-300	-460	-500	Vdc
Plate Current	4.15	4.65	3.54	Adc
Screen Current	200	253	238	mAdc
Grid Current *	38	59	53	mAdc
Driving Power	360	375	340	W
Useful Power Output * \#	28.9	35.2	34.4	kW
Efficiency	77.4	80.0	84.2	\%
Gain *	19	18	20	dB

OR MODULATOR

GRID DRIVEN, Class ABl
(sinusoidal wave)
ABSOLUTE MAXIMUM RATINGS (per tube)

TYPICAL OPERATION (2 tubes)

Plate Voltage	7800	7800	7800	vdc
Screen Voltage	500	750	1500	Vdc
Grid Voltage \#	-70	-125	-250	Vdc
Zero Signal Plate Current	0.75	0.75	1.0	Adc
Max.Signal Plate Current	3.4	5.2	9.2	Adc
Max.Signal Screen Current	90	220	600	mAdc
Peak Grid Voltage *	65	115	200	\checkmark
Max.Signal Plate Diss. \#\#	6.0	7.0	13.5	kW
Plate 0utput Power . . .	14.5	26.0	44.0	kW
Load Impedance plate/plate	6300	3500	1600	Ohms
\# Adjust for specified zero-signal plate current* Approximate value\#\# Per tube				

TYPICAL OPERATION values are obtained by calculation from published characteristic curves. To obtain the specified plate current at the specified bias, screen, and plate voltages, adjustment of the rf grid voltage is assumed. If this procedure is followed, there will be little variation in output power when the tube is replaced, even though there may be some variation in grid and screen currents. The grid and screen currents which occur when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no performance degradation providing the circuit maintains the correct voltage in the presence of the current variations.

A P PLICATION

MECHANICAL

MOUNTING - The $4 C \times 20,000 C$ must be operated with its axis vertical. The base of the tube may be up or down at the convenience of the designer.

SOCKET \& CHIMNEY - The EIMAC air-system socket SK-320 and air chimney SK-326 are designed for use with the $4 C \times 20,000 \mathrm{C}$ in dc or LF/HF applications. For VHF applications the SK-360 air-system socket is recommended. The use of the recommended air flow through an air-system socket will provide effective cooling of the base, with air then guided to the anode cooling fins by the chimney.

COOLING - The maximum temperature rating for the external surfaces of the tube is 250 Deg. C, and sufficient forced-air cooling must be used in all applications to keep the temperature of the anode (at the base of the cooling fins) and the temperature of the ceramic/metal seals comfortably below this rated maximum.
It is considered good engineering practice to design for a maximum anode core temperature of $225^{\circ} \mathrm{C}$ and temperature-sensitive paints are available for checking base and seal temperatures before any design is finalized. EIMAC Application Bulletin \#20 titled "TEMPERATURE MEASUREMENTS WITH EIMAC TUBES" is available on request.

It is also good practice to allow for variables such as dirty air filters, rf seal heating, and the fact that the anode cooling fins may not be clean if the tube has been in service for some length of time. Special attention is required in cooling the center of the stem (base), by means of special directors or some other provision. An air interlock system should be incorporated in the design to automatically remove all voltages from the tube in case of even partial failure of the tube cooling air.
Minimum air flow requirements for a maximum anode temperature of $225^{\circ} \mathrm{C}$ for various altitudes and
dissipation levels are listed. The pressure drop values are approximate and are for the tube in a SK-320 socket. Pressure drop in a typical installation will be higher because of system loss.
Pressure drop will be higher if the SK-360 socket is used unless additional air passages are provided around the mounted socket.

Inlet Air Temperature $=25^{\circ} \mathrm{C}$

Sea Level	Plate Diss. kW	Flow Rate CFM	Press. Drop In.Water
	12.5	257	0.6
	15.0	367	1.0
	17.5	498	1.5
	20.0	652	2.4
5000 Feet	Plate	Flow	Pres5.
	Diss.	Rate	Drop
	kW	CFM	In. Water
	12.5	311	0.6
	15.0	444	1.1
	17.5	603	1.7
	20.0	789	2.7
10,000 Feet	Plate	Flow	Press.
	Diss.	Rate	Drop
	kW	CFM	In.Water
	12.5	377	0.7
	15.0	537	1.2
	17.5	730	1.9
	20.0	955	3.0
Inlet Air Temperature $=35^{\circ} \mathrm{C}$			
Sea Level	Plate	Flow	Press.
	Diss.	Rate	Drop
	kW	CFM	In.Water
	12.5	299	0.7
	15.0	426	1.2
	17.5	579	1.9
	20.0	758	2.9

5000 Feet	Plate Diss. kW	$\begin{aligned} & \text { Flow } \\ & \text { Rate } \\ & \text { CFM } \\ & \hline \end{aligned}$	Press. Drop In. Water
	12.5	362	0.7
	15.0	516	1.3
	17.5	701	2.1
	20.0	917	3.3
10,000 Feet	Plate	Flow	Press.
	Diss.	Rate	Drop
	kW	CFM	In.Water
	12.5	438	0.8
	15.0	625	1.4
	17.5	848	2.4
	20.0	1111	3.8
Inlet Air Temperature $=50^{\circ} \mathrm{C}$			
Sea Level	Plate	Flow	Press.
	Diss.	Rate.	Drop
	kW	CFM	In.Water
	12.5	379	0.9
	15.0	540	1.6
	17.5	733	2.6
	20.0	960	4.1
5000 Feet	Plate	Flow	Press.
	Diss.	Rate	Drop
	kW	CFM	In.Water
	12.5	459	1.0
	15.0	654	1.8
	17.5	888	3.0
	20.0	1162	4.7
10,000 Feet	Plate	Flow	Press.
	Diss.	Rate	Drop
	kW	CFM	In. Water
	12.5	555	1.1
	15.0	791	2.0
	17.5	1075	3.4
	20.0	1407	5.4

When long life and consistent performance are factors cooling in excess of minimum requirements is normally beneficial.
Air flow must be applied before or simultaneously with the application of power, including the tube filament, and should normally be maintained for a short period of time after all power is removed to allow for tube cooldown.

ELECTRICAL

ABSOLUTE MAXIMUM RATINGS - Values shown for each type of service are based on the "absolute system" and are not to be exceeded under any service conditions. These ratings are limiting values outside which the serviceability of the tube may be impaired. In order not to exceed absolute ratings the equipment designer has the responsibility of determining an average design value for each rating below the absolute value of that rating by a safety factor so that the absolute values will never be exceeded under any usual conditions of supply-voltage variation, load variation, or manufacturing variation in the equipment itself. It does not necessarily follow that combinations of absolute maximum ratings can be attained simultaneously.

FILAMENT OPERATION - During turn-on the filament inrush current should be limited to 300 amperes. At rated (nominal) filament voltage the peak emission capability of the tube is many times that needed for communcation service. A reduction in filament voltage will lower the filament temperature, which will substantially increase life expectancy. The correct value of filament voltage should be determined for the particular application. It is recommended the tube be operated at full nominal voltage for an initial stabilization period of 100 to 200 hours before any action is taken to operate at reduced voltage. The voltage should gradually be reduced until there is a slight degradation in performance (such as power output or distortion). The filament voltage should then be increased a few tenths of a volt above the value where performance degradation was noted for operation. The operating point should be rechecked after 24 hours.
Filament voltage should be closely regulated when voltage is to be reduced below nominal in this manner, to avoid any adverse influence by normal line voltage variations.
Filament voltage should be measured at the tube base or socket, using an accurate rms-responding meter. Periodically throughout the life of the tube the procedure outlined above for reduction of voltage should be repeated, with voltage reset as required, to assure best tube life.

ELECTRODE DISSIPATION RATINGS - The maximum dissipation ratings for the $4 C \times 20,000 C$ must be respected to avoid damage to the tube. An exception is the plate dissipation which may be permitted to rise above the rated maximum during brief periods (10 seconds maximum) such as may occur during tuning.

GRID OPERATION - The maximum control grid dissipation is 200 watts, determined approximately by the product of the dc grid current and the peak positive grid voltage. A protective spark-gap device should be connected between the control grid and the cathode to guard against excessive voltage.

SCREEN OPERATION - The maximum screen grid dissipation is 450 watts. With no ac applied to the screen grid, dissipation is simply the product of dc screen voltage and the dc screen current. With screen modulation, dissipation is dependent on rms screen voltage and rms screen current. Plate voltage, plate loading, or bias voltage must never be removed while filament and screen voltages are present, since screen dissipation ratings will be exceeded. Energy limiting circuitry (which will activate if there is a fault condition) and spark gap over-voltage protection are recommended as good engineering practice.

The tube may exhibit reversed (negative) screen current under some operating conditions. The screen supply voltage must be maintained constant for any values of negative and positive screen current which may be encountered. Dangerously high plate current may flow if the screen power supply exhibits a rising voltage characteristic with negative screen current. Stabilization may be accomplished with a bleeder resistor connected from screen to cathode, to assure that net screen supply current is always positive. This is essential if a series electronic regulator is employed.

FAULT PROTECTION - In addition to the normal plate over-current interlock, screen current interlock, and coolant interlock, the tube must be protected from internal damage caused by an internal plate arc which may occur at high plate voltage. A protective resistance should always be connected in series with each tube anode, to absorb power supply stored energy if an internal arc should occur. If power supply stored energy is high an electronic crowbar, which will discharge power supply capacitors in a few microseconds after the start of an arc, is recommended. The protection criteria for each electrode supply is to short each electrode to ground, one at a time, through a vacuum relay switch and a 6 -inch section of \#30 AWG copper wire. The wire will remain intact if protection is adequate.
EIMAC's Application Bulletin \#l7 titled FAULT PROTECTION contains considerable detail, and is available on request.

HIGH VOLTAGE - Normal operating voltages used with this tube are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for highvoltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage capacitors whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

RADIO-FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 300 MHz most of the energy will pass completely through the human body with little attenuation or heating affect. Public health agencies are concerned with the hazard even
at these frequencies. OSHA (Occupational safety and Health Administration) recommends that prolonged exposure to rf radiation should be limited to 10 milliwatts per square centimeter.

INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.
The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

SPECIAL APPLICATIONS - When it is desired to operate this tube under conditions widely different from those listed here, write to Varian EIMAC; attn: Applications Engineering; 301 Industrial Way; San Carlos, CA 94070 U.S.A.

OPERATING HAZARDS

PROPER USE AND SAFE OPERATING PRACTICES WITH RESPECT TO POWER TUBES ARE THE RESPONSIBILITY OF EQUIPMENT manufacturers and users of such tubes. all persons who work with or are exposed to power tubes or equipMENT WHICH UTILIZES SUCH TUBES MUST TAKE PRECAUTIONS TO PROTECT THEMSELVES AGAINST POSSIBLE SERIOUS bODILY inJury. DO NOT BE CARELESS AROUND SUCH PRODUCTS.

The operation of this tube may involve the following hazards, any one of which, in the absence of safe operating practices and precautions, could result in serious harm to personnel:
a. HIGH VOLTAGE - Normal operating voltages can be deadly. Remember that HIGH VOLTAGE CAN KILL.
b. LOW-VOLTAGE HIGH-CURRENT CIRCUITS - Personal jewelry, such as rings, should not be worn when working with filament contacts or connectors as a short circuit can produce very high current and melting, resulting in severe burns.
c. RF RADIATION - Exposure to strong rf fields

Please review the detailed operating hazards sheet enclosed with each tube, or request a copy from: Varian EIMAC, Power Grid Application Engineering, 301 Industrial Way, San Carlos CA 94070.

EIMAC 4CX 20,000C
TYPICAL
CONSTANT CURRENT
CHARACTERISTICS
SCREEN VOLTAGE $=1000$
$-\quad$ Plate Current (Amperes)
$-\cdots-\quad$ Screen Current (Amperes)
$-\infty-\infty$ Grid Current (Amperes)

 HTI! IT $\pi!$ mirininim $\xrightarrow{C+}$ $\rightarrow+1$

 400 - 1 - 1 -- 15
 - 10 - 10

 $\xrightarrow[\square]{\square} 1.0$

EXTENDING TRANSMITTERTUBE LFE

EIMAC APPLICATION BULLETIN NO. 18

Abstract

A carefully followed program of filament voltage management can substantially increase the life expectancy of transmitter power grid tubes. With today's rising operating costs, such a program makes good financial sense.

IN RECENT YEARS station managers have seen a substantial increase in replacement costs for power grid tubes. The blame can be placed on higher manufacturing costs due to inflation, volatile precious metal prices, and an uncertain supply of some exotic metals. The current outlook for the future holds little promise for a reversal in this trend toward higher prices.

One way to offset higher operating costs is to prolong tube life. For years station engineers have used various tricks to get longer operating life, with greater and lesser degrees of success. Success can be maximized, however, by understanding the various

varian(:) eimac

301 Industrial Way
San Carlos, CA 94070
1678 So. Pioneer Rd.
Salt Lake City, UT 84104

Extending Transmitter Tube Life

factors that affect tube life and implementing a program of filament voltage management.

A number of factors can aid maximum tube life in your transmitter. For example, are the maximum ratings given on the tube manufacturer's data sheet being exceeded? Data sheets are available upon request from most companies. Most tube manufacturers have an application engineering department to assist in evaluating tube performance for a given application. Make use of these services!

Headroom

Is the final power tube of the transmitter capable of delivering power in excess of the desired operating level? Or is the demand for performance so great that minimum output power levels can only be met at rated nominal filament voltage?
Figure 1 can be used as a basic guide to determine if a given transmitter and tube combination has a good probability of giving extended life service. Extended life service is defined as useful operating life beyond that normally achieved by operating at rated nominal filament voltage. The amperes/watt ratio is obtained by dividing average plate current by the product of filament voltage and filament current. If the amperes/ watt ratio falls in the "good" to "excellent" range, excess emission is sufficient to permit filament voltage derating. At a lower filament voltage, the filament temperature is lowered, thus extending life. A typical FM transmitter on the market today may have an amperes/watt filament ratio of 0.002 to 0.003 . This equipment would be considered an excellent choice to achieve extended tube life. On the other hand, if the amperes/watt ratio falls in the "poor" range, it is unlikely that filament derating is possible due to limited
emission. Note that this guideline should be used for thoriated tungsten emitters only, and does not apply to oxide cathode-type tubes.

Instrumentation

Are all tube elements metered in the transmitter? Elements should be metered for both voltage and current, and meters should be redlined to define operation within safe limits. More modern transmitters may incorporate a microprocessor-controlled circuit to monitor all pertinent parameters.

In addition, the following controls are necessary if an effective filament voltage management program is to be undertaken: power output metering for an FM transmitter or a distortion level meter for AM equipment; accurate filament voltage metering (an iron-vane instrument is preferred over the more common average responding RMS calibrated type; the filament voltage measurement must be made at the tube socket terminals); filament voltage control, capable of being adjusted to 0.1 V secondary voltage change; and a filament current meter-desirable but optional.

A means must be provided to hold filament voltage constant. If the filament voltage is permitted to vary in accordance with primary line voltage fluctuation, the effect on tube life can be devastating. An acceptable solution is the use of a ferroresonant transformer or line regulator. This accessory is offered by some transmitter manufacturers as an option and should be seriously considered if a tube life extension program is planned.

Transmitter housekeeping

Once the transmitter has been place in operation, tube life is in the hands of the chief engineer. The first action to prolong tube life falls into the category of routine maintenance. Most transmitter manufac-

Fig. 1. Probability of extended life service can be determined from this graph. Divide the average p.a. plate current in amperes by the product of filament voltage and current. The resulting amperes/watt ratio (Y -axis) is projected horizontally to the appropriate curve. The vertical projection to the X -axis indicate the life extension probability.

Extending Transmitter Tube Life

Flgure 2

Flgure 3

Flgure 4

Figure 5
turers have a routine maintenance schedule established in the equipment manual. This procedure must be followed carefully if operating costs are to be held to a minimum. During routine maintenance it is very important to look for tube and socket discoloration, either of which can indicate overheating.

Look for discoloration around the top of the cooler near the anode core and at the bottom of the tube stem where the filament contacts are made. Review Figures 2 and 3 for examples of a tube operating with inadequate cooling. It is possible for discoloration to appear in the areas mentioned if the transmitter has to operate in a dirty environment. If this is the case, the tube should be removed and cleaned with a mild detergent. After cleaning, the tube should be rinsed thoroughly to remove any detergent residue and blown dry with compressed air. If the discoloration remains, this is an indication that the tube has operated at too high a temperature. Check inlet and outlet air ducting and filters for possible air restriction. It may also be necessary to verify that the air blower is large enough to do the job in the present environment and that it is operating at rated capacity.

With the tube removed, the socket should be blown or wiped clean and carefully inspected. Any discoloration in the socket finger stock caused by overheating could contribute to early tube failure. A finger stock that loses its temper through prolonged operation at high temperature will no longer make contact to the tube elements (Figure 4). A well-maintained socket will score the tube contacts when the tube is inserted. If all fingers are not making contact, more currect flows through fewer contacting fingers, causing additional overheating and possible burnout (Figure 5).

Filament voltage management

The useful operating life of a thoriated tungsten emitter can vary widely with filament voltage. Figure 6 describes the relative life expectancy with various filament voltage levels. Obviously, a well-managed filament voltage program will result in longer life expectancy. Improper management, on the other hand, can be very costly.

For a better understanding of this sensitive aging mechanism, the filament itself must be understood. Most filaments in high-power, gridded tubes are a mixture of tungsten and thoria with a chemical com-

Fig. 2. Improper cooling means short tube life (left). Discoloration of metal around inner filament stem and anode fins indicates poor cooling or improper operation of tube.
Properly cooled and operated tube (right) shows no discoloration after many hours of use. In both cases, good sock. eting is indicated by scoring on circular connector rings.

Fig. 3. Dirty and discolored cooler of amplifier tube at left indicates combination of discoloration due to heating and lack of cleaning. Tube has operated too hot and dust has collected in anode louvres.

Fig. 4. Minute scoring in base contact rings indicates that socket finger stock has made good, low-resistance contact to tube elements. Well-maintained socket will score the tube contacts when tube is inserted. If all fingers do not make contact, more current will flow through fewer contact fingers, causing additional overheating and burning, as shown in Fig. 5.

Fig. 5. High resistance socket contacts has caused severe burning of contact area in the base. Overheated base caused early demise of tube.

Extending Transmitter Tube Life

position of $\mathrm{W}+\mathrm{THO}_{2}$. A filament made of this wire is not a suitable electron emitter for extended life applications until it is processed. Once the filament is formed into the desired shape and mounted, it is heated to approximately $2100^{\circ} \mathrm{C}$ in the presence of a hydrocarbon. The resulting thermochemical reaction forms di-tungsten carbide on the filament's surface. Life is proportional to the degree of carburization. If the filament is overcarburized, however, it will be brittle and easily broken during handling and transporting. Therefore, only approximately 25% of the cross-sectional area of the wire is converted to ditungsten carbide. Di-tungsten carbide has a higher resistance than tungsten; thus, the reaction can be carefully monitored by observing the reduction in filament current as the carburizing process proceeds.

As the tube is used the filament slowly decarburizes. At some point in life, all of the di-tungsten carbide layer is depleted and the reduction of thoria to free
thorium stops. The filament is now decarburized and is no longer an effective electron emitter.

The key to extending the life of a thoriated tungsten filament emitter is to control operating temperature. Emitter temperature is a function of the total RMS power applied to the filament. Thus, filament voltage control is temperature control. Temperature varies directly with voltage. As the emitter temperature rises the de-carburizing process is accelerated and tube life shortened. Figure 6 shows that useful tube life can vary significantly with only a 5% change in filament voltage.

FILAMENT VOLTAGE MANAGEMENT

(Figure 6)
Filament voltage management allows extended tube life when accompanied by a continuing housekeeping program. When filament voltage is too high (dashes), power tube looses emission rapidly and normal operating life is not achieved. When filament is operated at rated voltage (black curve) normal tube life is achieved in a majority of cases. With a filament voltage management program (bullets), extended tube life may be achieved. When the minimum required output power level is finally reached (right-hand portion of curve), the filament voltage may be raised to rated value, or above, to achieve additional useful operating life. If filament is run "cool" (stars), extremely short life will result. Note that filament voitage management program does not take effect until about 200 hours of operating time have passed.

If voltage management program is not undertaken, tube should be run at rated filament voltage.

Extending Transmitter Tube Life

Of great importance to long tube life is the temperature of the elements and the ceramic-to-metal seals. Element temperature can be held within proper limits by observing the maximum dissipation ratings listed in the data sheet. Seal temperature should be limited to $200^{\circ} \mathrm{C}$ at the lower anode seal under worst-case conditions. As element temperature rises beyond $200^{\circ} \mathrm{C}$, the release of contaminants locked in the materials used in tube manufacturing increases rapidly. These contaminants cause a rapid depletion of the di-tungsten carbide layer of the filament.

When a new power tube is installed in a transmitter, it must be operated at rated nominal filament voltage for the first 200 hours. This procedure is very important for two reasons. First, operation at normal temperature allows the getter to be more effective during the early period of tube life when contaminants are more prevalent. This break-in period conditions the tube for operation at lower filament voltage to obtain longer filament life. Secondly, during the first 200 hours of operation filament emission increases. It is necessary for the life extension program to start at the peak emission point.

A chart recorder or other device should be used to monitor variations in primary line voltage for several days of transmitter operation. The history of line voltage variations during on-air time must be reviewed prior to derating filament voltage. Plan to establish the derated voltage during the time period of historically low line voltage, as this is the worst-case condition. If line variation is greater that $\pm 3 \%$, filament voltage must be regulated.
Record output power (FM) or distortion level (AM) with the tube operating at rated nominal filament voltage. Next, reduce filament voltage in increments of 0.1 V and record power or distortion levels at each increment. Allow one minute between each increment for the filament emission to stabilize.

When a noticeable change occurs in output power or the distortion level changes, the derating procedure must stop. Obviously, operation at this point is unwise since there is no margin for a drop in line voltage. It is safer to raise the voltage 0.2 V above the critical voltage at which changes are observed to occur. Finally, recheck power output or distortion to see if they are acceptable at the chosen filament voltage level. Recheck again after 24 hours to determine if emission is stable and that the desired performance is maintained. If performance is not repeatable, the derating procedure must be repeated.

Continuing the program

The filament voltage should be held at the properly derated level as long as minimum power or maximum distortion requirements are met. Filament voltage can
be raised to reestablish minimum requirements as necessary. This procedure will yield results similar to those shown in the illustration, to achieve as much as 10% to 15% additional life extension. When it becomes necessary to increase filament voltage, it is a good time to order a new tube. Filament voltage can be increased as long as the increase results in maintaining minimum level requirements.

When an increase fails to result in meeting a level requirement, filament emission must be considered inadequate and the tube should be replaced. Don't discard it or sell it for scrap! Put it on the shelf and save it. It will serve as a good emergency spare and may come in very handy some day. Also, in AM transmitters, a low-emission RF amplifier tube can be shifted to modulator use where the peak filament emission requirement is not as severe.

Start planning for longer tube life now! Review the following steps you can take:

- Investigate the manufacturer's ratings on the power tubes in your present equipment, or the transmitter you plan to buy.
- Check that your transmitter has sufficient headroom. Is there a margin of safety in tube operation?
- Look for important instrumentation in the next transmitter you buy. Are all tube elements monitored for voltage and current in the transmitter?
- Whether your transmitter is new or old, start a filament life extension program.
Remember that each time you replace a power tube, the recommended derating procedure must be rerun. Voltage levels required with one tube do not apply to a replacement tube.

When purchasing a tube, insist on a new tube that carries the full, original manufacturer's warranty. Only tubes manufactured by the company of origin have to perform to published data. This is the important reason that transmitter manufacturers buy new, warranted tubes from the original manufacturer.

[^0] of Varian EIMAC, for their help and suggestions in preparing this paper.

Bibliography

1. Ayer, R.B., "Use of Thoriated-Tungsten Filaments in High Power Transmitting Tubes," Proceedings of the I.R.E., page 591, May, 1952.
2. Kohl, Walter H., Materia/s and Techniques for Electron Tubes, Reinhold Publishing Corp., N.Y., 1960. 3. Horsting, C.W., "Carbide Structures in Carburized Thoriated-Tungsten Filaments," Journal of Applied Physics, Volume 18, Jan., 1947.
3. Langmuir, I., "The Electron Emission from Thoriated Tungsten Filaments," Physical Review, 1923, Page 357.
4. Walker, H.S., "High Power Transmitting Valves With Thoriated Filaments for Use in Broadcasting," The Institution of Electrical Engineers, Paper No. 3200E, March, 1960.

Troubleshooting Guide for the PM3329BP-5

This manual is the proprietary property of Pioneer Magnetics Inc. and is submitted under a confidential relationship for a specific stated purpose and shall not be disclosed to any unauthorized person, be incorporated in other projects, be reproduced in whole or part, or become the basis for a manufactured product without prior written consent from Pioneer Magnetics Inc.

Troubleshooting Guide for the PM3329BP-5

Copyright © Pioneer Magnetics
All rights reserved
Contents of this publication may not be reproduced in any form without the written permission of Pioneer Magnetics Inc.

Products of Pioneer Magnetics Inc. are covered by U.S. and foreign patents and/or pending patents.

PM3329BP-5 Troubleshooting Guide

Pioneer Magnetics Inc.
1745 Berkeley Street
Santa Monica, California 90404
Telephone: (800) 233-1745
(310) 829-6751

Fax:
(310) 4533929

This manual is the proprietary property of Pioneer Magnetics Inc. and is submitted under a confidential relationship for a specific stated purpose and shall not be disclosed to any unauthorized person, be incorporated in other projects, be reproduced in whole or part, or become the basis for a manufactured product without prior written consent from Pioneer Magnetics Inc.

Troubleshooting Guide for the PM3329BP-5

Table of Contents

1. Installation Instructions Page V
2. Specifications Page vi
3. Introduction to the 3329BP-5 Power Supply Page 1
3.1 Reference Schematics Page 1
3.2 Introduction to the PFC board Page 1
4. Introduction to the Main Converter board Page 2
5. The Hybrid circuits Page 3
6. The Auxiliary circuits Page 5
7. The Options circuit Page 11
8. Hybrid functions Page 11
9. Bring-up Procedures for the PFC board Page 12
10. Incoming Test Procedures Page 15
10.1 Test Equipment Requirements Page 15
11. Troubleshooting Tips Page 24
11.1 Mechanical considerations Page 26
11.2 Screw Sizes and Descriptions Page 26
11.3 Troubleshooting Suggestions Page 29
11.3.1 Power supply with cover on Page 29
11.3.2 Power supply with cover off Page 30
11.4 Technical Support Telephone/Fax Numbers Page 32
12. Recommended Spare Part List Page 33
12.1 Spare Part List for the PFC board Page 33
12.2 Spare Part List for the Main Converter board Page 34
13. List of Illustrations Page iii

Troubleshooting Guide for the PM3329BP-5

List of Illustrations

1. Power Supply Outline Drawing (Installation Instructions) Page v
2. Figure 2-1.......... V(humps) Page 1
3. Figure 2-2.......... FET Gate Drive Signal Page 2
4. Figure 2-3 FET Drive Signal Page 3
5. Figure 2-4 Clock Signal Page 4
6. Figure 2-5 FET Switching Signal (PFC) Page 5
7. Figure 2-6 Auxiliary Drive Signal Page 5
8. Figure 2-7 Auxiliary (AC) Supply Page 6
9. Figure 2-8 Auxiliary Supply Page 6
10. Figure 2-9........ Power Transformer Output Page 7
11. Figure $2-10$......FET Switching Signal (Main Converter) Page 8
12. Figure 2-11 Power FET Drive Signals Page 8
13. Figure 2-12 Power Pulses Page 9
14. Figure 2-13...... Output Choke Signal Page 9
15. Figure 2-14 Auxiliary (aux) Flyback Signal Page 10
16. Figure 2-15...... Burden Resistor Waveform Page 10
17. Figure 2-16...... Option (AC) Supply Page 11
18. Figure 2-17......Waveform at the Drain of FET (Q4) Page 13

Troubleshooting Guide for the PM3329BP-5

List of Illustrations (continued)
19. Figure 2-18 Waveform at Q4 (PFC bring-up) Page 14
20. Figure 3-1 Adjust Pot Locations Page 15
21. Figure 3-2 Elcon Connector Pinouts Page 17
22. Figure 3-3........ Power Supply Test Hook-up Page 18
23 Figure 3-4......... Input Current Waveform Page 23
24. Figure 4-1 Inside the Main Converter Page 24
25. Figure 4-2 Main Converter PCB Page 25
26. Figure 4-3 PFC PCB Page 25
27. Figure 4-4 Main converter Layout Page 27
28. Figure 4-5 Installation of Screws of PFC board Page 28

Troubleshooting Guide for the PM3329BP-5

INSTALLATION INSTRUCTIONS

MOUNTING CONSIDERATIONS

The power supply is intended for use in commercial and industrial, controlled environment applications.

A reasonably dust-proof enclosure must be provided in the end use system, machine or equipment.

Ambient temperature less than $50^{\circ} \mathrm{C}$, relative humidity less than 95\%.

At installation, do not block the airflow generated by its internal ventilator fan

Maximum mounting screw penetration is $3 / 32$ inches $(2.28 \mathrm{~mm})$, care should be exercised not to reduce internal creepage and clearance distances, nor to cause internal damages due to excessive penetration

CAUTION:

The available energy at the secondary output studs exceeds 240 VA. Consideration is required for added operator accessibility.

INPUT VOLTAGE SELECTOR

The power supply is provided with dedicated input voltage as marked. The power supply has no on-off switch provision and is activated by the application of input power as rated, make sure that all output connections are properly made before application of input power

INPUTS AND OUTPUTS

After the supply has been installed mechanically, the connections to the input and output terminals are made by connecting cables of suitable gauge to the input and output terminals.

Note that main output terminals are connected internally to voltage sense circuitry and provide automatic local sense when no connection is made to the remote sense terminals provided at the Elcon connector.

VOLTAGE ADJUSTMENT

To verify output voltage, place a digital voltmeter across the output terminals. Do not install a load. Energize unit. When voltage appears, correct level by turning the voltage adjust pot to specified output voltage (clockwise to increase).

This manual is the proprietary property of Pioneer Magnetics Inc. and is submitted under a confidential relationship for a specific stated purpose and shall not be disclosed to any unauthorized person, be incorporated in other projects, be reproduced in whole or part, or become the basis for a manufactured product without prior written consent from Pioneer Magnetics Inc.

Troubleshooting Guide for the PM3329BP-5

SPECIFICATIONS

OPTIONS

RANGE: 180 to 264 VAC. Frequency: 47 to 63 Hertz. INPUT CURRENT: FULL LOAD: 12 Amps RMS INRUSH CURRENT: 25 Amps averaged over $1 / 2$ cycle. INPUT LEAKAGE: Input leakage current to ground 25 ma .
POWER FACTOR: 0.99 @ full power.
HARMONIC CURRENT: < 5%.
Efficiency: Typically 80% at 185 VAC.
HOLD UP TIME: Minimum of 86 watt-seconds are available upon loss of input.
FUSING: Internal fuse located in input line.

OUTPUT

VOLTAGE: 48 VDC.
OUTPUT VOLTAGE ADJUSTMENT RANGE: $\pm 10 \%$ of nominal output voltage.
POLARITY: Output is fully isolated and regulated. It may be referenced plus or minus as required.
CURRENT: 0 to 42 Amps.
REMOTE SENSING: Provides correct voltage at load with up to 0.5 volt total loop drop in the output line.
STATIC REGULATION: Line: $\pm 0.25 \%$ over full line range.
Load: See droop curve.
VOLTAGE STABILITY: $\pm 0.1 \%$ after 30 minutes warm-up for a 24 hour period.
TEMPERATURE COEFFICIENT: $\pm 0.2 \%{ }^{\circ}$ FROM $0^{\circ} \mathrm{C}$ TO
$50^{\circ} \mathrm{C}, \mathrm{P}-\mathrm{P}$.
RIPPLE AND NOISE: Differential: 1% of 500 mV ; $(20 \mathrm{~Hz}$ to 20 MHz bandwidth) Common mode: $1.5 \mathrm{Vp-p}$.
MINIMUM LOAD: No minimum load is required.
TURN ON DELAY: 1 sec , maximum from application of AC line (when greater than or equal to 220 VAC .
OVERVOLTAGE PROTECTION: The standard OVP setting is $125 \% \pm 5 \%$ of nominal. OVP sensing is done at the output terminals.
OVERCURRENT PROTECTION: Constant current limiting set at 105% of rated output current.

ENVIRONMENTAL
OVERTEMPERATURE PROTECTION: Automatically shuts down and latches the unit the event of an over temperature condition.
AUDIBLE NOISE: 60 dBA maximum at 1 meter.
TEMPERATURE: Operating: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ at full load.
Storage: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
HUMIDITY: 20\% TO 95\% non-condensing.
ALTITUDE: Operating: To 8,000 feet. Non-operating: To 30,000 feet.
VIBRATION: Operating: From 5 to $27 \mathrm{~Hz}, 0.02$ in double amplitude; from 27 to $500 \mathrm{~Hz}, 0.75 \mathrm{G}, 3$ axes, 5 min per octave sweep, dwell 1 min at resonance. Non-operating: From 5 to $17 \mathrm{~Hz}, 0.01$ in double amplitude, from 17 to 500 Hz , 1.5 G peak; 3 axes, 5 min per octave sweep; dwell 0 min at resonance.
SHOCK: Operating: 5 G , half sine, $11 \mathrm{mSec}, 3$ axes. Nonoperating: 15 G , half sine, $11 \mathrm{mSec}, 3$ axes.
COOLING: Forced air, internal fan. Aifflow enters at the connector end.
EMI: Conducted: VDE071, Level $\mathrm{A}, 150 \mathrm{KHz}$ to 30 MHz . Radiated: VDE0871, Level A.
SAFETY: UL 1950, CSA22.2 No. 950, TUV to EN60-950

MECHANICAL

DIMENSIONS: Case $5^{\prime \prime} \times 5^{\prime \prime} \times 11.5^{\prime \prime}$ plus 0.30^{n} for I/O connectors and $1.5^{"}$ for handle.
WEIGHT: 9 lb .
MOUNTING: Designed to lock into matching rack. I/O CONNECTORS: Elcon Lower Drawer Connector ${ }^{\text {TM }}$ provides hot plug operation.

OPTIONS
POWER FAIL - TTL signal goes low at least 5 mSec before loss of regulation.
LOGIC INHIBIT and enable system can be turned on or off with a TTL compatible signal low switch contact. CURRENT SHARING: Single wire current sharing. UNDERVOLTAGE DETECTION: Monitors the output voltage when it drops below a specified level.

[^1]
Troubleshooting Guide for the PM3329BP-5

Introduction to the PM3329BP-5 Power Supply

Reference Schematics: PFC Board - 122220 Main Converter - 122217
The input board is called the PFC (Power Factor Corrector) module, and the main converter board is called the Main module. The PFC module, utilizing a boost converter provides the 380 volt DC bus for the main module through connectors J9 and J8. The PFC module also provides the operating voltages for the fan and for the option circuits. The power supply uses a DC fan, so that the wide range of the (PFC) Power Factor Corrected AC input voltage does not affect the fan speed or air flow intensity.

Let's begin with the PFC board, since everything starts with the AC input voltage.

Figure 2-1

V(humps)

Scope probe to L3, pin 1
Scope Ground to 380 volt bus return
Time $=5 \mathrm{uSec} / \mathrm{div}$
Amplitude $=50 \mathrm{v} / \mathrm{div}$
This is the rectified unfiltered signal from the bridge rectifier BR!

The turn-on sequence begins with the charging up of the input capacitors, C11, C112, and C113, through the input bridge rectifier, BR1. The initial charging current of the input capacitors is limited by the inrush resistors, R7 and R21. When the voltage on the input caps reaches approximately 100 Volts, or the voltage across the inrush resistors reaches 30 volts, the Relay K1, closes, forcing the charging current through the relay contacts to prevent the inrush resistors from overheating and burning. During this time, the auxiliary circuit of the PFC provides an isolated 24 volts DC to the DC fan which begins turning. It also provides 15 volts DC for the control circuit of the main converter.

[^2]
Troubleshooting Guide for the PM3329BP-5

Introduction to the PM3329BP-5 Power Supply (continued)

The main converter does not turn on until the low line inhibit lenable sees about 300 volts on the 380 volt DC bus. The enable circuit senses the DC bus, and when the bus reaches 300 volts, an enable signal is sent from the PFC controller hybrid Z1, pin 17 (CE+) through the opto-coupler (U1) through J3, pin 1, turning on the main converter. Note that the returns of the PFC and the main converter are isolated by use of the opto-coupler. At this time the power supply will have regulated output.

To facilitate troubleshooting the PFC module, several critical waveforms are illustrated. The first four illustrations show the waveforms of the boost converter. The rest show the signals of the aux circuits.

Figure 2-2
FET GATE DRIVE SIGNAL

Scope probe to base of Q2 \& Q3 Scope ground to 380 V bus return

- 0 volts

Time $=5 u S e c / d i v$
Amplitude $=5 \mathrm{v} / \mathrm{div}$

The FET gate drive signal is generated by the PFC controller hybrid, Z1-14 (GD). This signal uses the negative swing to -4 volts or so to ensure that the FET Q4, fully dumps the FET charge on turn off. This enhances the aperation of the boost converter and protects the FET from excessive stress, which in turn means more reliability. If the FET gate drive signal is distorted or looks much different than pictured, the hybrid Z 1 would be suspect.

[^3]
Troubleshooting Guide for the PM3329BP-5

Introduction to the PM3329BP-5 Power Supply (continued)

Speaking of the "hybrid" circuits, there are two on each module. They provide all of the controlling signals for the entire power supply. Special care must used when replacing them. Only recommended soldering procedures are to be used, especially in putting a new one in place. Excessive heat can kill many of the miniature components embedded on the hybrids. At this moment, note that it is extremely important that all of the components that are in this power supply be obtained from Pioneer Magnetics; see replacement part recommendations at the end of this document. Each component has been selected carefully for optimum performance and reliability. Z1 is the PFC controller. Z2 is the controller for the auxiliary circuit. Also a sync signal is generated at the clock, pin 10 of $\mathrm{Z1}$ which is used both on the PFC board and the main converter. This sync signal keeps everything between different commons and levels throughout the entire power supply including the option circuits. The clock signal is illustrated in Figure 2-4 on the next page.

Figure 2-3
FET DRIVE SIGNAL
Scope probe to emitter of Q3 Scope ground to C 15 negative

Time $=5 u S e c / d i v$
Amplitude $=0.5 \mathrm{v} / \mathrm{div}$
$\leftarrow 0$ volts

PFC board is important , and the failure of any one of them would jeopardize the functionality of the whole power supply, some of these components are extremely critical. Of course, the PFC controller hybrid must be functioning properly in order for anything else to respond accordingly. In troubleshooting the PFC board, as it is in any electronic device, it is sometimes very difficult to verify which is the cause of the failure because most electronic circuits are just a bunch of loops.

[^4]
Troubleshooting Guide for the PM3329BP-5

Introduction to the PM3329BP-5 Power Supply (continued)

We therefore have to look first at the component that is supposed to be the controlling device. In this case, it is definitely the PFC controller hybrid. I am not suggesting that you replace Z 1 automatically, however it is a good starting point. The telltale distortion of the (V(humps) see figure 2-1) would probably indicate a defective bridge rectifier (BR1) or possibly one of the components of the EMI filter circuit. Also, if the fuse (F3) is open or if the inrush resistors (R21 \& R7) are burned, then we would suspect the relay (K1) or again, the PFC controller hybrid. The critical components on the PFC board are: (not necessarily in order of importance) the PFC controller hybrid (Z1), the bridge rectifier (BR1), the FET (Q4), the FET (Q1), the aux supply hybrid (Z2), and the opto-coupler (U1). Also we need to include the diodes D1, D4, D5, and especially D9.

CLOCK SIGNAL

Figure 2-4

Scope probe to pin 10 of Z1
Scope ground to 380 V bus return
Time $=5 u S e c / d i v$
Amplitude $=0.5 \mathrm{v} / \mathrm{div}$
$\leftarrow 0$ volts

Another waveform which should be monitored is the FET switching signal at Q4. See Figure 2-5 on next page.

Another item to check is the +5 volt DC reference from the PFC controller hybrid, Z 1 , at pin 16. This is directly connected to the auxiliary supply hybrid, $Z 2$, at pin 9.

[^5]
Troubleshooting Guide for the PM3329BP-5

Introduction to the PM3329BP-5 Power Supply (continued)

Figure 2-5
FET Switching Signal
Scope probe to the drain of Q4 Scope ground to the source of Q4

Time $=5$ uSec/div
Amplitude $=50 \mathrm{v} / \mathrm{div}$
$\leftarrow 0$ volts

The auxiliary supply hybrid "aux", is responsible for the generation of the auxiliary voltages for the main converter board. Initially a 5 volt reference is provided by Z 1 at startup; before the main converter can be turned on, it must have a $71 / 2$ volt enable level.

AUXILIARY DRIVE SIGNAL

Figure 2-6

Scope probe to pin 4 of $\mathbf{Z 2}$
Scope ground to the 380 V bus return
$\leftarrow 0$ volts

Time $=5 \mathrm{uSec} / \mathrm{div}$
Amplitude $=5 \mathrm{v} / \mathrm{div}$

This manual is the proprietary property of Pioneer Magnetics Inc. and is submitted under a confidential relationship for a specific stated purpose and shall not be disclosed to any unauthorized person, be incorporated in other projects, be reproduced in whole or part, or become the basis for a manufactured product without prior written consent from Pioneer Magnetics Inc.

Troubleshooting Guide for the PM3329BP-5

Introduction to the PM3329BP-5 Power Supply (continued)

AUXILIARY SUPPLY
Figure 2-8

Scope probe to the drain of Q1 Scope ground to the source of Q1

Time $=5 \mathrm{uSec} / \mathrm{div}$
Amplitude $=50 \mathrm{v} / \mathrm{div}$
$\leftarrow 0$ volts prior written consent from Pioneer Magnetics Inc.

Troubleshooting Guide for the PM3329BP-5

Introduction to the PM3329BP-5 Power Supply (continued)

The main converter module uses the 380 volt DC bus from the PFC module for primary power. The 380 volt DC bus connects via the connectors P9 [+] and P8 [-] to the sources of the power FETs, Q101 through Q104. These FETs are connected as two sets of switches. One set of FETs is turned on which causes current flow in the power transformer (T101) in one direction, then after some dead time, the other FETs are turned on causing current flow in the power transformer in the reverse direction. Note the waveform in Figure 2-9. The "dead time" between the sets of FETs is deliberate to prevent the situation in which both sets of FETs will be conducting at the same time. If this happens, something will be sure to fail, causing a small catastrophe in other parts of the main converter board and even on the PFC board.

Figure 2-9
POWER TRANSFORMER OUTPUT
Scope probe to T101-5
Scope ground to T101-6
$\leftarrow 0$ volts
Time $=5 \mathrm{uSec} / \mathrm{div}$
Amplitude $=50 \mathrm{v} / \mathrm{div}$

The power FETs (Q101 through Q104) are being driven by the flip-flop (U101); actually the drive signal is developed by the pulse width modulator which is one of the functions of the hybrid Z101. The flip-flop only acts basically as a steering circuit for the drive signal. See the power FET drive signals in Figure 2-11. The waveforms in this troubleshooting guide are close approximations of the way the waveforms that actually appear. They are mostly to show some semblance of the time and amplitude. You may find that if and when you look at these waveforms on your scope, that you think the power supply is not functioning properly.

[^6]
Troubleshooting Guide for the PM3329BP-5

Introduction to the PM3329BP-5 Power Supply (continued)

Figure 2-10
FET Switching Signal
Scope probe to the drain of Q101
Scope ground to the source of Q101
Time $=10 u S e c / d i v$
Amplitude $=50 \mathrm{v} / \mathrm{div}$
$\leftarrow 0$ volts

Figure 2-11
Power FET Drive Signals
Scope probe to pin 6 of U101
Scope ground to aux return
$\leftarrow 0$ volts

Scope probe to pin 11 of U101
$\leftarrow 0$ volts

Troubleshooting Guide for the PM3329BP-5

Introduction to the PM3329BP-5 Power Supply (continued)

Figure 2-12
Power Pulses

Scope probe to pin 3 of U101
Scope ground to aux return
$\leftarrow 0$ volts
Time $=5 \mathrm{uSec} / \mathrm{div}$
Amplitude $=2 \mathrm{v} / \mathrm{div}$

Figure 2-13
Output Choke Signal
$\leftarrow 0$ volts

Scope probe to pin 1 of L101 Scope ground to aux return

Time $=5 \mathrm{uSec} / \mathrm{div}$
Amplitude $=20 \mathrm{v} / \mathrm{div}$

This manual is the proprietary property of Pioneer Magnetics Inc. and is submitted under a confidential relationship for a specific stated purpose and shall not be disclosed to any unauthorized person, be incorporated in other projects, be reproduced in whole or part, or become the basis for a manufactured product without prior written consent from Pioneer Magnetics Inc.

Troubleshooting Guide for the PM3329BP-5

Introduction to the PM3329BP-5 Power Supply (continued)

Figure 2-14
Auxiliary (aux) Flyback
$\leftarrow 0$ volts
Scope probe to the anode of D110 Scope ground to aux return

Time $=5 \mathrm{uSec} / \mathrm{div}$
Amplitude $=50 \mathrm{v} / \mathrm{div}$

Figure 2-15
Burden Resistor Waveform (used as a ramp)

Scope probe to pin 23 of Z101 (R106)
Scope ground to aux return
Time $=5$ uSec/div
Amplitude $=0.2 \mathrm{v} / \mathrm{div}$
$\leftarrow 0$ volts

Troubleshooting Guide for the PM3329BP-5

Introduction to the PM3329BP-5 Power Supply (continued)

Figure 2-16
$\leftarrow 0$ volts
Option (AC) Supply
Scope probe to Cathode of D112
Scope ground to logic return
Time $=5$ uSec/div
Amplitude $=50 \mathrm{v} / \mathrm{div}$

The options circuit which includes undervoltage detection, and logic inhibit, is not referenced to the return of the output bus because it requires a floating return for isolation for external connections.

The control for the functions on the main converter board are handled by the two hybrids, Z101 and Z102. The following functions for each hybrid are shown below.

$$
\begin{array}{lr}
\hline \text { Z101 } & \text { Z102 } \\
\hline
\end{array}
$$

current mode pulse modulator current ramp signal remote sense amplifier current sharing -6B disconnect voltage ratio amplifier low line inhibit control current amplifier
sync circuit
current limiting overvoltage protection
undervoltage detection-128
5 volt reference for the option
logic inhibit
special voltage adjust -127

[^7]
Troubleshooting Guide for the PM3329BP-5

Bring-up Procedures for the PFC Board

1. Visual Inspection
1.1 Check the PFC board closely for any evidence of physical damage: such as, broken connections, broken or damaged wires, damaged or burned pcb traces, loose or damaged connectors, poor solder joints or solder bridges. Ensure that the board is mechanically sound before testing. This board should be tested after any failure or repair on either the main (base board) or the PFC board.
2. Isolation Tests
2.1 Measure the resistance between INPUT and OUTPUT, between INPUT and CHASSIS, and between OUTPUT and CHASSIS. Each resistance measurement must exceed 2 megohms. These tests should be performed again when the power supply has been reassembled with the case. To ensure compliance with universal safety standards, a High-Pot test should be performed on the complete power supply before placing the power supply into the rack.
3. PFC Test
3.1 Apply 60 volts DC from a "CURRENT LIMITED" DC power supply to the PFC input; the positive lead to E3 and the negative lead to E5.
3.2 Connect the scope probe to the heatsink (drain) of Q1, with the ground clip to pin 1 of J8 (380 volt bus return). Check waveform for frequency and amplitude. See Figure 2-17.
3.3 If the waveform is distorted, and the DC power supply is drawing excessive current, check the auxiliary drive signal at $\mathrm{Z2}$, pin 4. If there is no signal or if the signal is very low, replace the hybrid module Z2. If the problem persists, replace the FET, Q1.
3.4 If the waveform checks out approximately like the one in Figure 2-17, go to Part 2 on the next page.

Troubleshooting Guide for the PM3329BP-5

Waveform at the drain of the FET, Q4
5 uSec/div
20 volts/div

The time should be approximately 11 ms
The amplitude should be approximately 150 volts

Figure 2-17

Bring-up Procedures for the PFC Board Part 2

4. Connect the DC fan to the connector at J 3 .
4.1 If possible, use the DC fan that is connected to the power supply case.
5. Solder connector at pins 1,6 , and 20 of $Z 1$.
6. Apply 60 volts DC to the PFC input at E3 \& \#5.
7. Check the wave form at the FET Q4 (on screw \#3). See Figure 2-18 on next page.
7.1 Measure the PFC output at C11; should be approximately 375 volts DC.
7.2 The waveform shown is only an approximation of the actual signal.

Troubleshooting Guide for the PM3329BP-5

Waveform at Q4
5uSecs/div
50 volts/div
The time is approximately 13 milliseconds. The amplitude approximately 375 VDC .

Figure 2-18

If the PFC board performs according to the prior tests, the next step is to connect the PFC board to the base board. It is extremely important that the PFC board function properly before connecting to the base board.

Comments
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Troubleshooting Guide for the PM3329BP-5

Figure 3-1

Incoming Test Procedures

1. Test Equipment Requirements
1.1 Variable AC source 0 to 270 VAC 3 KVA - typical - ®Powerstat
1.2 True RMS Digital AC Ammeter
1.3 True RMS Digital AC Voltmeter
1.4 Dual Trace Oscilloscope with 1 times 10 scope probe
1.5 Times ripple probe to be connected to the Elcon connector ... see number 1.11
1.6 Current probe to monitor input current waveform
1.7 Variable DC power supplies 0 to 60 VDC 0 to 2 amps with series diode
1.8 Digital DC Voltmeter
1.9 Digital DC Ammeter
1.10 Multimeter - typical - Tripplett
1.11 Elcon connector (female) model 298-08-01100
1.12 Dynamic Active Load Bank - 2500 Watt - typical - Transistor Devices

Troubleshooting Guide for the PM3329BP-5

Incoming Test Procedures continued

2. Isolation Resistance Test - This test must be done before any connections are made.
2.1 Using an ohmmeter set to the times 10 ohms scale:
2.1.1 Measure for continuity between Chassis Pins 3 and 4 to any exposed part of the chassis, such as the handle.
2.1.2 Measure across the $A C$ input pins 1 and 2 to verify that the input is not shorted.
2.1.3 Measure across the output pins $26 / 28$ and $27 / 29$ to verify that the output is not shorted.
2.2 Using an ohmmeter set to the times 100K scale:
2.21 Measure from any part of the chassis to either input pin; must measure greater than 200K.
2.22 Measure from either input pin to either output pin; must measure greater than 200K
2.23 Measure from either output pin to the chassis; must measure greater than 200K.

Check to see that none of the pins on the Elcon connector are bent or damaged.
If you already have an incoming inspection procedure set up, you have the option to use either method.

[^8]
Troubleshooting Guide for the PM3329BP-5

Incoming Test Procedures continued

Connector Pinouts:

48D42-2f-4d-6b-127-128-R

Elcon Lower Drawer Part No.

297-08-01100

Figure 3-2

Pinouts

Pin 1:	Input AC (Neutral)
Pin 2:	Input AC
Pin 3:	Chassis Ground
Pin 4:	Chassis Ground
Pin 6:	Unit Present Indication
Pin 7:	Unit Present Indication
Pin 17:	-6B, Current Sharing
Pin 18:	Not Used
Pin 19:	Logic Return
Pin 20:	-2F, Logic Inhibit

Pin 21:	Dummy Pin
Pin 22:	-128, Undervoltage Signal
Pin 23:	Remote Sense, Positive
Pin 24:	-127, Voltage Adjust
Pin 25:	Remote Sense, Negative
Pin 26:	Output Positive
Pin 27:	Output Negative
Pin 28:	Output Positive
Pin 29:	Output Negative

Options List

$-2 F$
-4 D
-6 B
-127
-128
$-R$
:---
Overtemperature Thermal Switch
Single Wire Current Sharing
Special Voltage Adjust
Undervoltage Detection Signal
Reverse Airflow

This manual is the proprietary property of Pioneer Magnetics Inc. and is submitted under a confidential relationship for a specific stated purpose and shall not be disclosed to any unauthorized person, be incorporated in other projects, be reproduced in whole or part, or become the basis for a manufactured product without prior written consent from Pioneer Magnetics Inc.

Troubleshooting Guide for the PM3329BP-5

Incoming Test Procedures continued

Connect the test equipment to the power supply under test. A test adapter for connecting to the Elcon connector will have to made, including scope probe connection. A current probe for the input current waveform is not shown, however, a "clamp-on" type of current probe may be used.

Figure 3-3

Troubleshooting Guide for the PM3329BP-5

Incoming Test Procedures continued

3.1 Once all of the connections have been made on the unit under test, verify that all connections are secure and of the correct polarities.

3.2 Adjust the output load to 0 amps .

3.3 While monitoring the $A C$ input current, turn on the switch of the variable $A C$ source and gradually increase the input voltage ... the fan should start turning at about 100 volts $A C$ in ... if the input current is normal, continue adjusting the input voltage ... the output should come on at approximately 170 volts continue increasing the input AC voltage to nominal, 230 volts AC.
3.4 Apply a small load and verify and adjust the output voltage to nominal value, always observing the AC input current. This is a good indicator if anything is drastically wrong.
3.5 Increase the load current to the rated level (42 amps). Check each meter and the scope waveform for anything out of the ordinary the input current should not exceed 10 amps . Once the AC input voltage is at nominal, verify that the output voltage does not change significantly with changes in load or line.
3.6 Test 1: Overload Test - Set the AC input to 230 volts.
3.6.1 Adjust the load current to maximum and verify that the output current does not exceed 48.3 amps .
3.7 Test 2: Low Line Test - Set the load current to 42.0 amps .
3.7.1 Lower the AC input to 175 volts and verify that the output voltage does not drop below 47.0 volts.
3.8 Test 3: Voltage Adjust Range - Set the AC input to 230 volts - adjust the load current to 30 amps .
3.8.1 Verify that the output voltage will adjust to 47.0 volts and to 49.0 volts. Set the output voltage back to 48.0 volts after the voltage adjust range test.

[^9]
Troubleshooting Guide for the PM3329BP-5

Incoming Test Procedures continued

3.9 Test 4: Regulation and Ripple.

3.9.1 Adjust the load current to minimum load (0.3 amps).
3.9.2 Set the AC input to 180 volts; measure and record the output voltage and output ripple and spikes.
3.9.3 Set the AC input to 264 volts; measure and record the output voltage and output ripple and spikes
3.9.4 Adjust the load current to nominal (42.0 amps).
3.9.5 Set the AC input to 180 volts; measure and record the output voltage and output ripple and spikes.
3.9.6 Set the AC input to 264 volts; measure and record the output voltage and output ripple and spikes.
3.9.7 The output ripple spikes should not exceed 480 millivolts peak to peak under all of the above conditions.
3.9.8 Subtract the lowest output voltage measurement from the highest output voltage measurement. The maximum output deviation should not exceed 250 millivolts.
3.10 Test 5: Dynamic Test: Set the AC input to 230 volts.
3.10.1 Set the static load to 31.5 amps - Step load to 10.5 amps .
3.10.2 Switch between the static load and full load (42.0 amps) and verify that neither the positive or negative overshoot exceeds 960 millivolts.
3.11 Test 6: Overvoltage Protection - Set AC input to 230 volts - set the load current to 0.3 amps .

[^10]
Troubleshooting Guide for the PM3329BP-5

Incoming Test Procedures continued
3.11.1 Monitor closely while increasing the output voltage until it reaches the overvoltage trip point and drops to 0 volts. The output should trip between 52.0 and 54.0 volts. It may be necessary to connect a current limited DC power supply across the Elcon pins 24 and 27 . Note the special voltage adjust (-127 option). After the overvoltage trips, the power supply will have to recycled; turn off the AC input, remove the overvoltage condition, wait 30 seconds and turn the power supply back on. Verify that the output comes up normal.
3.12 Test 7: Logic Inhibit.
3.12.1 Apply +2.0 volts to the inhibit, Elcon pin 20 , the return to logic return, pin 19, and verify that the output is disabled.
3.12.2 Remove the voltage to the inhibit, Elcon pin 20, and verify that the output is disabled.
3.12.3 Short Elcon pin 20 to pin 19, and verify that the output is enabled.
3.13 Test 8: Current Sharing Check (-6B).
3.13.1 Open circuit voltage test - Adjust the AC input to 230 volts and adjust the load current to 0.3 amps .
3.13.2 Measure the voltage between the $-6 B$ output on Elcon pin 17, and the output negative remote sense on Elcon pin 25. Verify that the -6B output is between 2.57 and 2.67 volts.
3.13.3 Adjust the load current to 42.0 amps and verify that the $-6 B$ output is between 4.95 and 5.05 volts.
3.13.4 Quick disconnect test - connect a $7.5 \mathrm{~K}, 1 \%$ resistor between the -6 B output, with the load current at 42.0 amps and the $A C$ input at 230 volts, turn of the input power and measure the resistance between pin 17 and pin 25 of the Elcon connector. The resistance should read $7.5 \mathrm{~K}, \pm 5 \%$.

[^11]
Troubleshooting Guide for the PM3329BP-5

Incoming Test Procedures continued

3.14 Test 9: Special Voltage Adjust (-127).

3.14.1 Connect the external current limited DC power supply positive lead to pin 24 of the Elcon connector, with the negative lead to the negative output pin 27 or 29.
3.14.2 Adjust the external DC power supply to 0 volts and verify that the output of the unit under test measures between 11.85 and 12.15 volts.
3.14.3 Adjust the external DC power supply to 2.5 volts and verify that the output of the unit under test measures between 29.90 and 30.10 volts.
3.14.4 Adjust the external DC power supply to 5.0 volts and verify that the output of the unit under test measures between 47.90 and 48.10 volts.
3.15 Test 10: Undervoltage Warning Signal (-128).
315.1 Adjust the load current to 1 amp , set the AC input to 230 volts.
315.2 Apply 2.0 volts to pin 20 of the Elcon connector with the return to pin 19.
315.3 Monitor pin 22 of the Elcon connector and verify that the signal goes from "logic high" to "logic low" when the unit is disabled.
3.16 Test 11: Power Factor Corrector Operational Test.
3.16.1 Set the $A C$ input to 230 volts, adjust the load current to 42.0 amps.
3.16.2 Using a current probe on one lead of the AC input line measure and observe the input current waveform. The input current waveform should be a smooth waveform. See examples in figure 3-4 on the next page.

This concludes the incoming test. Remember to set the output voltage to 48.0 volts.

Troubleshooting Guide for the PM3329BP-5

Incoming Test Procedures continued

Input Current Waveform

Figure 3-4

GOOD

Troubleshooting Guide for the PM3329BP-5

Troubleshooting Tips

"Let's look inside this power supply"
Figure 4-1

Main Converter

This manual is the proprietary property of Pioneer Magnetics Inc. and is submitted under a confidential relationship for a specific stated purpose and shall not be disclosed to any unauthorized person, be incorporated in other projects, be reproduced in whole or part, or become the basis for a manufactured product without prior written consent from Pioneer Magnetics Inc.

Troubleshooting Guide for the PM3329BP-5

Troubleshooting Tips (continued)

Figure 4-2 Main Converter PCB

Figure 4-3
PFC PCB

This manual is the proprietary property of Pioneer Magnetics Inc. and is submitted under a confidential relationship for a specific stated purpose and shall not be disclosed to any unauthorized person, be incorporated in other projects, be reproduced in whole or part, or become the basis for a manufactured product without prior written consent from Pioneer Magnetics Inc.

Troubleshooting Guide for the PM3329BP-5

Troubleshooting Tips (continued)

Reference Schematics: Base -122217 PFC - 122220

It has been said, that successful troubleshooting is a special talent. I know some technicians who can't tell the difference between forward drop and leakage current, but can "smell out" the problem in an amazingly short time. The point here is that good troubleshooter utilizes all of his senses The sound, the smell, the feel of the air flow, or the sight of watching a meter needle pinned against the manufacturer's label, all of the senses that a person possesses can be used in troubleshooting.

In the power supply, the PM3329BP-5, the failures though few, usually are something mechanical; something loose, a piece of foreign material inside the unit, a broken terminal or an installation problem. These are the first things that are noticed, long before a defective diode or IC. However, the purpose of this troubleshooting guide is not to show how to troubleshoot, but to point out some of the most likely failures based on the symptoms.

Looking a some of the mechanical considerations;

First of all, all of the screws that are used on this power supply are torx screws. When they are removed for troubleshooting or inspection, a new torx screw of the same size and length shall be used. Do not under any circumstances, reuse any of the torx screws or replace it with another type of screw.

Screw Size and Description
FLAT HEAD TORX M4-0.7 X 8 MM
FLAT HEAD TORX 4-40 X $3 / 16$
FLAT HEAD TORX $4-40 \times 5 / 32$
PAN HEAD TORX $4-40 \times 1 / 4$

\author{

Where used

 FOR Q4 ON THE PFC BOARD
 FOR THE POWER SUPPLY COVER
 USED ON THE PFC BOARD
 USED ON THE MAIN CONVERTER BOARD}

The case contains a number of special insulators. If one of these insulators has to be removed, make sure that the insulator does not get torn or distorted. It is extremely important that the insulators as well as any other materials that were installed in the power supply be replaced in a good condition and properly located.

See figure 4-4, and figure 4-5 on the following pages for some of the mechanical layouts.

[^12]
Troubleshooting Guide for the PM3329BP-5

Troubleshooting Tips (continued)

Figure 4-4

This manual is the proprietary property of Pioneer Magnetics Inc. and is submitted under a confidential relationship for a specific stated purpose and shall not be disclosed to any unauthorized person, be incorporated in other projects, be reproduced in whole or part, or become the basis for a manufactured product without prior written consent from Pioneer Magnetics Inc

Troubleshooting Guide for the PM3329BP-5

Troubleshooting Tips (continued)

Figure 4-5

1. INSTALL SCREWS TO SECURE PFC ASSY TO CHASSIS AS SHOWN

2. TORQUE ALL SCREWS TO 6 INCH POUNDS.

This manual is the proprietary property of Pioneer Magnetics Inc. and is submitted under a confidential relationship for a specific stated purpose and shall not be disclosed to any unauthorized person, be incorporated in other projects, be reproduced in whole or part, or become the basis for a manufactured product without prior written consent from Pioneer Magnetics Inc.

Troubleshooting Guide for the PM3329BP-5

Troubleshooting Tips (continued)

Power Supply With the Cover on

Failure	Suggestions	Board
Output Regulation	Loose connection on the output busbar, check for bent pins at the remote sense pins on the Elcon connector, check that there is solid contact between the unit and the receptacle. Make sure that the fan is turning and the airflow is normal. Check the input voltage and the input current. If all of these are OK, the unit should be moved to an area where the cover can be removed.	Elcon
Draws High Input Current, more than 10 amps.	Check to see that the input voltage is at the proper level, this power supply requires 230 volts AC. Check for burning smell. Check for strange noises. Is the current pulsing?	
Fan noisy	Fan blade possibly hitting the insulator or the fan wires. This will have to be opened to verify.	Main Board
Output won't come up or comes on briefly, then shuts off.	Check the output voltage adjustment pot. Turn the pot all the way counter-clock-wise and recycle the unit. Also check the remote sense connections at pins 23 and 25 of the Elcon connector.	Main Board
The power supply shuts off after being on for some period of time	Check the fan, this is a sign that the unit is overheating. If the fan seems to be OK, something inside the power supply is probably overheating or the thermal switch is faulty. This unit will have to be opened to verify	Unit
Fan not turning	Check for fan blade being hindered by something like the insulator or fan wires	
Audible noise	Check for loose connections	Unit

Troubleshooting Guide for the PM3329BP-5

Troubleshooting Tips (continued)

Power Supply With the Cover Off

Failure	Suggestions	Board
Output regulation	Check for loose connection at the output busbar. Check for loose screws on the output capacitors. Loosen the output cap screws, then secure. Check the FET switching signal at the drain of the FET, Q101, while varying the output load current. See the waveform example in figure $2-5$ on page 5. If the signal is low or distorted, check the power FET drive signals at U101, pins 6 and 11. If this looks OK, replace Q101.	Main Board
Draws high input current	Check D110, D106, D109, and U101. Also check Q101Q104.	Main Board
High output	Check U102, replace $\mathrm{Z101}$	Main Board
Current limit out of range	Replace $\mathrm{Z101}$	Main Board
High output ripple	Check connections on output caps, C105-C107	Main Board
Fan not turning	Loose connection at J 2 and P2. Check voltage across C19 at D8. Check the signals at Q1 and the anode of D6	PFC
Fan noisy	Check to see if the fan blade is touching the fan wires or the insulator.	Main Board
Power section failure	Check the power FETs, Q101-Q104, diodes D113-D120. Check D1, D11, D14, Q4 and Q5 on the PFC board	Main Board

Troubleshooting Guide for the PM3329BP-5

Troubleshooting Tips (continued)

Power Supply With the Cover Off

Failure	Suggestions	Board		
Audible noise	Check for loose connections, especially the output caps.			Main
:---				
Board				

Troubleshooting Guide for the PM3329BP-5

Troubleshooting Tips (continued)

Please note that most of the failures are caused by mechanical problems as opposed to component failures. Many times the components that fail are usually being subjected to unnecessary stresses due to blocking of air flow, dirty environments and just plain bad handling. Following is a quick reference guide of places and parts on this power supply that will be the most likely cause of the failure.

Where is the problem?

Current limit
Undervoltage Detection
Overvoltage Detection
Overheating
Regulation
Logic Inhibit
Output ripple and noise
Current sharing
Special voltage adjust -127
Power section failures
hybrid Z101
hybrid Z102
hybrid Z101
Thermal switch
hybrid Z101
hybrid Z102
output capacitors
hybrid Z101
hybrid Z102
Q101-Q104, D113-D120

Telephone Support during business hours 8:00 A.M. to 4:00 P.M. PCT
Doug Hansen Telephone: (310) 828-0390 Fax: (310) 453-3929
Spare Parts Telephone: (310) 829-6751 Fax: (310) 453-3929

[^13]
Troubleshooting Guide for the PM3329BP-5

Recommended Spare Part List

Part 1

PFC Board

Note: Quantities are listed per 50 power supplies

Component	Designator	PMI Part No	Quantity
PFC Control Hybrid	Z1	122104-3	5
PFC Aux Supply Hybrid	Z2	122105	5
Capacitor 470uF 450V	C11, C12, C13	512108	6
Capacitor 120pf 1000V	C18	515064-104	5
Capacitor 0.1uF 1000V	C21	515064-121	5
Diode 1A 600V	D3,D4, D6, D7, D8	500177	10
Diode 3A 600V	D1	522044	5
Diode Heatsink Assy	D9 \& BR1	122391	5
Zener Diode 75V 35W	D5	525095	5
Fuse 20A 250V	F1	533033	5
Fuse 1.5A	F3	533047	10
Relay 20A 12V Coil	K1	537010	5
FET Heatsink Assy	Q4	122425	5
Transistor NPN	Q2	547066	5
Transistor PNP	Q3	547067	5
Resistor 5W 10\% 7.5 ohms	R7, R21	542001	10
IC (H11AV1A)	U1	528149	5

Note 2: All screws used on the PM3329BP-5 must be ton screws; these screws are not to be reused under any circumstances, if any screws are removed, throw them away.

[^14]
Troubleshooting Guide for the PM3329BP-5

Recommended Spare Part List

Part 2 Main Converter

Note: Quantities are listed per 50 power supplies

Component	Designator	PMI Part No	Quantity
 Control Hybrid Z101 122160 Option Hybrid Z102 122161 Capacitor 1000 uF63V C105, C106, C107 $514079-108$ Capacitor 680 pF 500V C101 $515070-681$ Diode Heatsink Assy D101-D104 122537 FET Heatsink Assy Q101-Q104 123023 Diode 1A 20V D106-D109, D127 522048 Diode 1A 600V D110, D129, D130 500177 Diode/Resistor Assy D112 117627 Zener Diode 15V 1W D113-D120 525075 Thermistor PTC 33 ohms RT101 5 545012 IC (UC3706N) U101 6 IC (4N28) U102 5 528386			

TABLE OF CONTENTS

PARAGRAPH
PAGE NO.

SECTION I	IPA THEORY OF OPERATION	
$1-1$	INTRODUCTION	$1-1$
$1-3$	GENERAL DESCRIPTION	$1-1$
$1-7$	IPA STATUS INDICATOR CIRCUIT BOARD	$1-1$
$1-10$	IPA CONTROLLER CIRCUIT BOARD	$1-6$
$1-12$	POWER SUPPLY FAULT CIRCUIT	$1-6$
$1-14$	RF POWER AMPLIFIER MODULE FAULT	$1-6$
	CIRCUIT	
$1-15$	RF POWER AMPLIFIER MODULE FORWARD	$1-6$
	POWER CIRCUIT	
$1-16$	RF POWER AMPLIFIER MODULE REFLECTED	$1-6$
	POWER CIRCUIT	
$1-19$	RF POWER AMPLIFIER MODULE	$1-7$
	OVER-TEMPERATURE CIRCUIT	
$1-21$	RF POWER AMPLIFIER MODULE CURRENT	$1-7$
	CIRCUIT	$1-7$
$1-22$	POWER CONTROL CIRCUIT	$1-7$
$1-24$	FAULT RESET CIRCUIT	$1-8$
$1-26$	MUTE CIRCUIT	$1-8$
$1-27$	POWER SUPPLY VOLTAGE METERING CIRCUIT	$1-8$
$1-28$	RF AMPLIFIER MODULE	$1-8$
$1-30$	RF AMPLIFIER AND CONTROLLER POWER	
	SUPPLIES	

SECTION II IPA MAINTENANCE

2-1
2-3
2-5
2-7
2-9
2-11
2-13
2-14
2-17
2-19
2-21
2-23
2-24
2-38
2-51
2-63
2-65
2-66
2-84
2-85
2-86

INTRODUCTION 2-1
SAFETY CONSIDERATIONS 2-1
MAINTENANCE 2-1
INSPECTION AND CLEANING $2-1$
AIR FILTERS $\quad 2-1$
DISPOSABLE FILTER 2-1
SCREEN FILTER 2-2
FLUSHING FANS 2-2
IPA CONTROLLER FRONT PANEL REMOVAL 2-2
ADJUSTMENTS 2-2
RF POWER AMPLIFIER MODULE ADJUSTMENTS 2-2
IPA CONTROLLER ADJUSTMENTS 2-4
REFLECTED POWER AND VSWR FOLDBACK 2-4
CALIBRATION
FORWARD POWER CALIBRATION 2-6
POWER SUPPLY BUSS VOLTAGE CALIBRATION 2-6
TROUBLESHOOTING 2-7
PRELIMINARY TROUBLESHOOTING 2-7
POWER SUPPLY MODULES 2-8
IPA TROUBLESHOOTING PROCEDURES 2-9
IPA COMPONENT LOCATIONS 2-11
POWER AMPLIFIER POWER SUPPLY MODULE 2-11 TROUBLESHOOTING

PARAGRAPH		PAGE NO.
2-87	POWER AMPLIFIER MODULE	
	TROUBLESHOOTING/REPAIR	
SECTION III	IPA PARTS LIST	
3-1	INTRODUCTION	3-1
SECTION IV	IPA DRAWINGS	
4-1	INTRODUCTION	4-1
	LIST OF TABLES	
TABLE NO.	DESCRIPTION	PAGE NO.
2-1	IPA TROUBLESHOOTING	2-10
3-1	IPA PARTS LIST INDEX	3-1
	LIST OF ILLUSTRATIONS	
FIGURE NO.	DESCRIPTION	PAGE NO.
1-1	IPA BLOCK DIAGRAM	1-2
1-2	IPA CONTROLLER SIMPLIFIED SCHEMATIC	1-3
1-3	RF AMPLIFIER MODULE SIMPLIFIED SCHEMATIC	1-9
2-1	IPA CONTROLLER FRONT PANEL REMOVAL	2-3
2-2	CONTROLLER CIRCUIT BOARD CONTROLS	2-5
2-3	MAIN POWER SUPPLY REMOVAL	2-9
2-4	IPA COMPONENT LOCATOR	2-13

SECTION I
 IPA THEORY OF OPERATION

1-1. INTRODUCTION.

1-2. The following text provides detailed theory of operation with supporting diagrams for the IPA unit.

1-3. GENERAL DESCRIPTION.
1-4. The IPA unit consists of: 1) an RF power module, 2) two switching power supply modules, and 3) a controller (refer to Figure 1-1). The IPA unit RF power module provides an overall gain of approximately 20 to output approximately 375 watts of power to drive the PA stage. RF drive for the IPA stage is provided by the FM exciter.
1-5. The IPA is equipped monitoring and metering circuitry. The monitoring and control functions are performed by a CMOS digital controller. The controller circuitry is implemented on two circuit boards: 1) a status indicator circuit board and 2) a controller circuit board. The controller is designed to: 1) monitor the RF power module and power supply for fault conditions, 2) provide automatic power control operation in response to IPA VSWR and RF power module temperature conditions, 3) provide indications of power supply, VSWR, overtemperature, and fault conditions, and 4) provide fault reset and manual RF output power control.

1-6. The RF amplifier module consists of an RF amplifier circuit board, a logic circuit board, a combiner, and a low-pass filter circuit board, and a directional coupler circuit board assembly. The RF amplifier circuit board contains a microstrip splitter, microstrip and capacitive matching networks, and two power MOSFET transistors. The circuitry is designed to generate approximately 500 watts of RF power. The RF amplifier module logic circuit board is equipped with: 1) a power level control circuit, 2) over-voltage, over-current, over-temperature circuitry, 3) fault detection circuitry, and 4) reflected/forward power limit circuitry. The combiner circuit board contains a microstrip combiner. The directional coupler circuit board is equipped with forward power and reflected power directional coupler circuits. The low-pass filter circuit board is equipped with a low-pass filter circuit.

1-7. IPA STATUS INDICATOR CIRCUIT BOARD.

1-8. The IPA status indicator circuit board is equipped with an IPA fault reset switch, an IPA power control potentiometer, and four LEDs (refer to Figure 1-2). IPA fault reset switch S200 is designed to reset the IPA controller fault circuitry in the event of an IPA power supply, VSWR, or over-temperature condition. Once the power supply, VSWR, or overtemperature condition has cleared, S200 can be depressed to reset the fault circuitry. When S200 is depressed, a LOW is output to the reset input of latches U5A, U5B, and U5C on the controller circuit board to reset the fault circuitry. IPA power control potentiometer R205 is designed to output a 3.6 volt to 3.8 volt de supply to U6D on the controller circuit board. The voltage is used to control the IPA RF power output.
1-9. LEDs DS200, DS201, DS202, and the LED associated with S200 present the status of the following IPA conditions: 1) fault/fault reset, 2) power supply fault, 3) VSWR, and 4) overtemperature. In the event of a power supply fault, VSWR, or over-temperature condition, a LOW is routed from the controller circuit board to the IPA status indicator circuit board to illuminate the appropriate indicator. In addition to the illumination of the appropriate fault indicator, a LOW from the controller circuit board is applied to the FAULT RESET switch/indicator LED when a power supply, VSWR, or over-temperature condition occurs.

FIGURE 1-2. IPA CONTROLLER SIMPLIFIED SCHEMATIC (Sheet 2 of 2)

1-10. IPA CONTROLLER CIRCUIT BOARD.

1-11. The controller is designed to monitor the operation of the RF amplifier module and the PA power supply module. The controller circuit board is equipped with power supply and RF power amplifier fault detector circuits. A power control circuit automatically foldsback the RF output power during high VSWR and temperature conditions. The circuit board is also equipped with metering circuits. The metering circuits process forward power, reflected power, and power supply voltage samples for application to the transmitter metering circuit board.

1-12. POWER SUPPLY FAULT CIRCUIT. The power supply fault circuit monitors the PA power supply 1 and optional PA power supply module 2 for fault conditions. In the event of a power supply 1 fault, a LOW is applied through switch U1A to power supply 1 fault comparator U3A. U3A will output a LOW to inverter U2B and the set input of latch U5A. U2B will output a HIGH to: 1) inverter U4A and 2) field-effect transistor Q2. With a HIGH at the gate of Q2, Q2 will output a LOW remote IPA power supply fault status signal. U4A will respond by routing a LOW to U2C. U2C will output a HIGH to bias field-effect transistors Q3 and Q4 on. Q3 will output a LOW to illuminate the fault reset indicator on the IPA status indicator circuit board. Q4 will output a LOW remote IPA fault status signal. U5A will output a HIGH to inverter U4D. U4D will output a LOW to illuminate the power supply fault indicator on the IPA status indicator circuit board.

1-13. The circuit also monitors the power supply present status signal. In the event the power supply present signal goes HIGH to indicate a fault or RF mute condition, comparator U3C will output a LOW to latch U5A. U5A will respond by routing a HIGH to U4D. U4D will output a LOW to illuminate the power supply fault indicator on the IPA status indicator circuit board.

1-14. RF POWER AMPLIFIER MODULE FAULT CIRCUIT. The RF power amplifier module fault circuit monitors module 2 for fault conditions and optional module 1 for fault conditions. In the event of an RF power amplifier module 2 fault, a HIGH is applied to inverters U4B and U4G. U4B will output a LOW to U2C. U2C will output a HIGH to bias transistors Q3 and Q4 on. Q3 will output a LOW to illuminate the fault reset indicator on the IPA status indicator circuit board. Q4 will output a LOW remote IPA fault status signal. U4G will output LOW remote IPA RF power amplifier fault signal.

1-15. RF POWER AMPLIFIER MODULE FORWARD POWER CIRCUIT. A sample of RF power amplifier module 2 forward power is applied to inverting amplifier U9A. Forward power calibrate control R15 is provided to calibrate the forward power sample. The output from U9A is applied to: 1) inverting amplifiers U9B and U6A. The output of U9B provides a
$1 \mathrm{~mA}=500$ watt sample to the metering circuit board and to non-inverting amplifier U9D. The output of U9D provides a +5.0 volt $=500$ watt sample to the transmitter controller. The output of U6A is applied to a voltage summing line used to control the IPA output power.

1-16. RF POWER AMPLIFIER MODULE REFLECTED POWER CIRCUIT. A sample of the RF power amplifier module 2 reflected power is applied to inverting amplifier U12A. Reflected power calibrate control R25 is provided to calibrate the reflected power sample. The output from U12A is applied to: 1) inverting amplifiers U12B and U6B. The output of U12B provides a $1 \mathrm{~mA}=50$ watt sample to the metering circuit board and to non-inverting amplifier U12C. The output of U12C provides a +5.0 volt $=55$ watt sample to the transmitter controller.

1-17. The output of U6B is applied to IPA VSWR comparator U6C. IPA VSWR control R45 adjusts the VSWR level at which the IPA will begin power foldback operation. The output of U6C is applied to: 1) a voltage summing line used to control the IPA output power and 2) VSWR fault comparator U8A.

1-18. VSWR fault comparator U8A is designed to monitor the IPA VSWR level. When the VSWR signal from U6C rises above the threshold, the output of U8A will go LOW. The LOW is applied to: 1) the set input of latch U5B and 2) transistors Q3 and Q4. Q3 will output a LOW to illuminate the fault reset indicator on the IPA status indicator circuit board. Q4 will output a LOW remote IPA fault status signal. U5B will output a HIGH to inverter U 4 E . The output of U4E will go LOW to illuminate the VSWR indicator on the IPA status indicator circuit board.

1-19. RF POWER AMPLIFIER MODULE OVER-TEMPERATURE CIRCUIT. A temperature sample from the RF power amplifier module 2 temperature circuit is applied to non-inverting amplifier U7A. The output of U7A is applied to non-inverting amplifier U7B. The output of U7B is applied to: 1) a voltage summing line used to control the IPA output power and 2) over-temperature fault comparator U8B.
1-20. Over-temperature fault comparator U8B is designed to monitor the RF power amplifier module temperature. When the over-temperature signal from U7B rises above the threshold, the output of U8B will go LOW. The LOW is applied to: 1) the set input of latch U5C and 2) transistors Q3 and Q4. Q3 will output a LOW to illuminate the fault reset indicator on the IPA status indicator circuit board. Q4 will output a LOW remote IPA fault status signal. U5C will output a HIGH to inverter U4F. The output of U4F will go LOW to illuminate the over-temperature indicator on the IPA status indicator circuit board.

1-21. RF POWER AMPLIFIER MODULE CURRENT CIRCUIT. A current sample from RF power amplifier module 2 is applied to inverting amplifier U10A. The output of U10A is applied to buffer U10D and inverting amplifier U10B. U10D will output a 1 mA module current signal when the module current is equal to 25 A . U10B will output a 5.0 volt signal to the transmitter controller when the module current is equal to 20 A .
1-22. POWER CONTROL CIRCUIT. The IPA output power is controlled by IPA power control potentiometer R205 on the IPA status indicator circuit board. The dc control voltage is applied to summing amplifier U6D. With no fault conditions, U6D will output a 4.4 volt signal to the IPA power supply. The supply will output the required dc voltage to produce 500 watts of RF output power.
1-23. Automatic power control operation is provided by summing amplifier U6D, the RF power module over-temperature circuit, the RF power module forward power circuit, and the RF power module reflected power circuit. U6D sums the outputs from the individual circuits and outputs a 3.8 volt signal to the IPA power supply for a 375 watt RF output. In the event of a module over-temperature or high VSWR condition, the output of U6D will automatically decrease in proportion to the condition. As a result, the IPA power supply voltage will be reduced and result in a lower output power. When the over-temperature or high VSWR condition clears, the IPA output power will automatically return to the original power level.

1-24. FAULT RESET CIRCUIT. The IPA controller circuit board is equipped with a reset circuit in the event of a fault in the IPA circuitry. The reset circuit is activated using IPA fault reset switch S200 on the IPA status indicator circuit board.
1-25. Once an IPA fault has cleared, the fault circuitry can be reset using S200. S200 will output a LOW to the reset inputs of latches U5A, U5B, and U5C. As a result, the output of each latch will go LOW. The LOW from each latch will be routed through an inverter to reset the IPA fault, VSWR fault, and over-temperature fault indicators.

1-26. MUTE CIRCUIT. Under certain conditions, the transmitter controller will output a LOW RF mute command to the IPA controller circuit board. The LOW is applied to inverter U2A and field-effect transistor Q1. U2A will output a HIGH to mute the power supply and disable the power supply fault circuitry. Q1 will be disabled to mute the RF power amplifier module and bias transistor Q5 on. Q5 will output a LOW to disable the IPA power control circuit.

1-27. POWER SUPPLY VOLTAGE METERING CIRCUIT. A voltage sample from the power supply circuit is applied through power supply bus voltage calibrate control R99 to amplifier/buffer U11A. Potentiometer R99 allows the power supply voltage to be calibrated. The output of U11A: 1) is applied to buffer U11B and 2) provides a $5.0=50 \mathrm{~V}$ sample for the transmitter controller circuit board. Buffer U11B provides a $1 \mathrm{~mA}=100 \mathrm{~V}$ sample to the transmitter metering circuit board.

1-28. RF AMPLIFIER MODULE.
1-29. The output of the exciter is applied to solid-state 500 watt RF amplifier module (refer to Figure 1-3). The RF amplifier module consists of an RF amplifier circuit board, a logic circuit board, a combiner, and a low-pass filter circuit board, and a directional coupler circuit board assembly. The RF amplifier circuit board consists of a two-stage power MOSFET amplifier circuit with input/output matching and balun circuitry. The logic circuit board controls the operation of the RF amplifier circuit and monitors the circuit for fault conditions. A combiner circuit combines the outputs of the two stages to provide a single 500 watt output. The low-pass filter circuit board removes all frequencies above the FM broadcast band. The directional coupler circuit board provides forward and reflected power samples to the logic circuit board.

1-30. RF AMPLIFIER AND CONTROLLER POWER SUPPLIES.

1-31. The IPA stage RF amplifier is equipped with a switching power supply module. The module provides a variable +48 V dc supply for application to the RF power amplifier module. The module is equipped with over-current, over-voltage, under-voltage, and over-temperature protection circuitry. The output of the supply is controlled by the IPA controller. The supply is not manufactured by Broadcast Electronics; however, a troubleshooting guide in APPENDIX A provides information on power supply operation. Refer to the Pioneer Magnetics troubleshooting guide in APPENDIX A for operation and troubleshooting information on the RF amplifier power supply module.

1-32. The IPA is also equipped with a modular switching controller power supply assembly. The assembly is not manufactured by Broadcast Electronics. Therefore, no theory of operation is provided.
broadcast ELECTRONICS INC

COPYRIGHT © 1997 Broadcast ELECTRoniss, inc
597-3002-14

SECTION II
 IPA MAINTENANCE

2－1．INTRODUCTION．

2－2．This section provides maintenance information for the IPA unit．
2－3．SAFETY CONSIDERATIONS．
WARNING
NEVER OPEN THE EQUIPMENT UNLESS ALL TRANS－ MITTER PRIMARY POWER IS DISCONNECTED．

2－4．The transmitter contains high voltages and currents which，if regarded carelessly，could be fatal．The transmitter has many built－in safety features，however；good judgement，care， and common sense are the best accident preventives．The maintenance information con－ tained in this section should be performed only by trained and experienced maintenance personnel．

2－5．MAINTENANCE．

WARNING
NEVER OPEN THE EQUIPMENT UNLESS ALL TRANS－ MITTER PRIMARY POWER IS DISCONNECTED．

2－6．The maintenance philosophy consists of preventative maintenance such as cleaning ap－ plied to the equipment to prevent future failures and second level maintenance consisting of procedures required to restore the equipment to operation after a fault．Perform the fol－ lowing maintenance procedures as required．

NEVER OPEN THE EQUIPMENT UNLESS ALL TRANS－ MITTER PRIMARY POWER IS DISCONNECTED．EN－ SURE ALL TRANSMITTER PRIMARY POWER IS DIS－ CONNECTED BEFORE ATTEMPTING MAINTENANCE ON ANY AREA WITHIN THE TRANSMITTER．

2－7．INSPECTION AND CLEANING．

2－8．On a regular basis，clean the equipment of accumulated dust using a brush and vacuum cleaner．Inspect the RF amplifier module and the power supplies for damage caused by component overheating．Overheated components are identified by circuit board discolor－ ation near the component leads．Inspect the circuit boards for loose hardware as required．
2－9．AIR FILTERS．
$2-10$ ．The IPA is equipped with two air filters．One filter is a disposable type filter located in a housing under the power amplifier module．The second filter is a screen type filter located on the IPA unit rear－panel．
2－11．DISPOSABLE FILTER．The disposable filter should be checked approximately once a month with replacement performed on an as－required basis．Never reverse a dirty air fil－ ter．Always replace the filter．A dirty filter results in restricted air flow and increased op－ erating temperatures for the transmitter solid－state components．
$2-12$. The IPA uses a disposable type air filter 1 in . X 10 in . X 20 in . (2.54 cm X 25.4 cm X 50.8 cm). Additional filters may be ordered from Broadcast Electronics (BE P/N 407-0162) or purchased locally. Install the blue side of the filter pointing towards the flushing fans. If a filter from a different manufacturer is purchased, install the filter air flow indicator pointing towards the flushing fans. Air filter replacement is accomplished by: 1) sliding the filter out of the housing and 2) inserting the new air filter into the panel with the airflow arrow pointing towards the flushing fans.

2-13. SCREEN FILTER. The screen filter is designed to be removed and cleaned using a brush and vacuum. Check the filter approximately once a month. Remove dirt from the filter on an as-required basis by: 1) removing the filter from the chassis and 2) cleaning the filter using a brush and vacuum.
2-14. FLUSHING FANS.
2-15. Inspect the IPA unit flushing fans for dust accumulation and periodically clean the fans using a brush and vacuum cleaner. The fans are cooled by air passing around each motor. If dust is allowed to accumulate on the motors, the ambient air temperature will increase due to restricted air flow. When the ambient air temperature increases, the fan motor bearing lubricant will gradually vaporize and bearing failure will occur.
$2-16$. It is recommended the flushing fan mounting hardware be periodically checked. The flushing fans are equipped with sealed bearings which do not permit lubrication. If a bearing fails, the motor must be replaced.
2-17. IPA CONTROLLER FRONT PANEL REMOVAL.
$2-18$. During maintenance of the IPA, the controller front panel will be required to be removed. The panel is equipped with a special bracket which allows the panel to be suspended from the chassis for maintenance procedures. To remove the IPA controller front panel, proceed as follows:

1. Refer to Figure 2-1 and remove the IPA controller front-panel mounting hardware.
2. Remove the IPA controller front panel and rotate the front panel hanger bracket 90° as shown (refer to Figure 2-1).
3. Refer to Figure 2-1 and install the IPA controller front panel in the maintenance position by inserting the hanger bracket into the slots in the chassis as shown.
2-19. ADJUSTMENTS. MITTER PRIMARY POWER IS DISCONNECTED.
WARNING

2-20. The following procedures present information required to adjust all the controls in the IPA unit. These adjustments are factory preset and therefore will require re-adjustment only if components on the circuit board have been replaced.
2-21. RF POWER AMPLIFIER MODULE ADJUSTMENTS.
2-22. The RF power amplifier module amplifier circuit board and the logic circuit board contain calibration controls. The power amplifier circuit board is equipped with bias level controls R9 and R22. The RF amplifier logic circuit board contains current offset control R11, current limit control R5, forward power calibration control R51, forward power limit control R15, and reflected power limit control R25. Due to the critical nature and specialized test equipment required to adjust the controls, the controls are not considered field adjustable. If the controls are to be adjusted, contact the Broadcast Electronics Customer Service Department.

2-23. IPA CONTROLLER ADJUSTMENTS.

2-24. REFLECTED POWER AND VSWR FOLDBACK CALIBRATION. Potentiometer R25 calibrates the reflected power circuit. Potentiometer R45 determines the VSWR level for foldback operations. The following text presents the procedure to adjust the reflected power meter and VSWR foldback controls.

2-25. Required Equipment. The following equipment is required to adjust the reflected power and VSWR foldback calibration controls.

1. Insulated adjustment tool.
2. Test cable.
3. Digital multimeter (Fluke 77 or equivalent).

2-26. Procedure. To adjust the reflected power calibration control, proceed as follows:
WARNING DISCONNECT ALL TRANSMITTER PRIMARY POWER BEFORE PROCEEDING.
WARNING

2-27. Disconnect all transmitter primary power before proceeding.
2-28. Refer to IPA CONTROLLER FRONT PANEL REMOVAL in the preceding text and perform the procedure to remove the IPA controller front panel.

2-29. Connect a test cable from the exciter RF output to the IPA RF output connector.
2-30. For an FX-50 exciter, remove the exciter top cover and operate the MUTE switch to NEG. For an FXI-60 exciter, remove plug from J3 and connect a temporary jumper wire between J3-6 and J3-14.
$2-31$. Operate the exciter to on and record the exciter forward power output displayed on the multimeter \qquad .

2-32. Adjust the exciter output for a 30 watt forward power indication on the exciter multimeter.
2-33. Refer to Figure 2-2 and connect a digital multimeter between test point TP-9 and ground.
2-34. Refer to Figure 2-2 and adjust reflected power calibrate control R25 for a - 1.48 volt dc indication on the multimeter.

2-35. Refer to Figure 2-2 and connect a digital multimeter between test point TP-1 and ground.
2-36. Refer to Figure 2-2 and adjust IPA VSWR foldback calibrate control R45 for a 4.3 volt dc indication on the multimeter. The VSWR indicator and the RESET switch/indicator will illuminate.

2-37. Remove the test equipment, replace the controller front panel, re-adjust the exciter output power to the level recorded in the previous text, operate the FX-50 MUTE switch to POS or remove the FXI-60 exciter temporary jumper wire at J3, reconnect the plug to J3, and re-connect the exciter RF output to the IPA input.

COPYRIGHT © 1997 BROADCAST ELECTRONICS, INC

2-38. FORWARD POWER CALIBRATION. Potentiometer R15 calibrates the forward power detector circuitry. The following text presents the procedure to calibrate the forward power detector circuitry.

2-39. Required Equipment. The following equipment is required to adjust the forward power calibration control.

1. Insulated adjustment tool.
2. Calibrated in-line wattmeter with 500 Watt element (Bird 43 or equivalent).
3. Test load and cable (50 Ohm Non-Inductive, Type N connector, 500 Watt minimum).
4. Digital multimeter (Fluke 77 or equivalent).

2-40. Procedure. To adjust the forward power calibration control, proceed as follows:
2-41. Operate the transmitter at a normal RF output power.
2-42. Operate the transmitter MULTIMETER switch to IPA FWD POWER and record the forward power indication \qquad -.

WARNING DISCONNECT ALL TRANSMITTER PRIMARY POWER BEFORE PROCEEDING.
WARNING

2-43. Disconnect all transmitter primary power before proceeding.
2-44. Refer to IPA CONTROLLER FRONT PANEL REMOVAL in the preceding text and perform the procedure to remove the IPA controller front panel.

2-45. Refer to Figure 2-2 and connect a digital multimeter between test point TP-8 and ground.
2-46. Energize the transmitter primary ac power and operate the transmitter at the desired output power level.

2-47. Adjust the front-panel POWER ADJUST control for a 500 watt indication on the wattmeter.

2-48. Refer to Figure 2-2 and adjust FWD PWR calibration control R15 for a -5.0 volt dc indication on the digital multimeter.

WARNING DISCONNECT ALL TRANSMITTER PRIMARY POWER BEFORE PROCEEDING.
WARNING

2-49. Disconnect all transmitter primary power.
$2-50$. Remove the test equipment, re-adjust the IPA forward power output to the level recorded in the preceding text, and replace the IPA controller front panel.

2-51. POWER SUPPLY BUSS VOLTAGE CALIBRATION. Potentiometer R99 on the controller circuit board calibrates the PA module power supply voltage detector circuitry. The following text presents the procedure to calibrate the PA module power supply voltage detector circuitry.

2-52. Required Equipment. The following equipment is required to adjust the PA module power supply voltage calibration control.

1. Insulated adjustment tool.
2. Digital multimeter (Fluke 77 or equivalent).

2-53. Procedure. To adjust the PA voltage calibration control, proceed as follows:

44 WARNING

DISCONNECT ALL TRANSMITTER PRIMARY POWER BEFORE PROCEEDING.

2-54. Disconnect all transmitter primary power before proceeding.
$2-55$. Refer to IPA CONTROLLER FRONT PANEL REMOVAL in the preceding text and perform the procedure to remove the IPA controller front panel.
$2-56$. Remove the RF power module and connect a digital multimeter between J603-A2 on the motherboard assembly and ground.
2-57. Energize the transmitter primary ac power.
$2-58$. Record the multimeter indication \qquad .
2-59. Refer to Figure 2-2 and connect a digital multimeter between test point TP-12 and ground.
2-60. Refer to Figure 2-2 and adjust PWR SUPPLY BUSS VOLTAGE calibrate control R99 for 10% of the multimeter indication recorded in the preceding text. For example, the multimeter indication at J603-A2 $=40.6$ volt dc. Therefore, adjust the voltage at test point TP-12 for a 4.06 volt de indication.

$44 \begin{aligned} & \text { WARNING } \\ & \downarrow \downarrow \text { WARNING }\end{aligned}$

DISCONNECT ALL TRANSMITTER PRIMARY POWER BEFORE PROCEEDING.

2-61. Disconnect all transmitter primary power.
$2-62$. Remove the test equipment, replace the IPA controller front panel, and replace the RF power module.
2-63. TROUBLESHOOTING.

$44 \begin{aligned} & \text { WARNING } \\ & \text { WARNING }\end{aligned}$

NEVER OPEN THE EQUIPMENT UNLESS ALL TRANSMITTER PRIMARY POWER IS DISCONNECTED.

2-64. Most troubleshooting consists of visual checks. Because of the voltages and high currents in the transmitter, it is considered hazardous to work with power energized. Therefore, the various transmitter indicators (meters, LEDs, fuses, and circuit breakers) should be used to isolate the malfunction to one specific area.
2-65. PRELIMINARY TROUBLESHOOTING. If difficulties are encountered and the IPA is suspected as faulty, the first step in troubleshooting should determine whether the exciter, the IPA unit, or the load is at fault. A high VSWR or an over-heating condition will cause the controller to limit RF output to prevent damage. The observable symptom would be loss of RF power. However, as the controller and the RF amplifier module are both components of a closed loop, either circuit could cause this symptom. Complete loss of RF output would indicate a power supply module problem. The following text presents a list of preliminary troubleshooting operations.

1. The RF input level to the IPA stage should be checked and adjusted as required.
2. Adjust the INPUT TUNING control to obtain a minimum IPA REFLECTED POWER indication on the transmitter multimeter.
3. If RF input level adjustment or input tuning adjustment does not correct the fault, refer to TABLE 2-1, RF AMPLIFIER POWER SUPPLY TROUBLESHOOTING, POWER AMPLIFIER POWER SUPPLY MODULE TROUBLESHOOTING, and POWER AMPLIFIER MODULE TROUBLESHOOTING/REPAIR in the following text and troubleshoot the IPA unit. If a circuit is diagnosed as faulty, the circuit fault may be isolated and repaired locally or the entire device may be returned to Broadcast Electronics, Inc. for exchange or replacement.

2-66. POWER SUPPLY MODULES. The IPA is equipped with two modular switching power supply modules. One module provides dc potentials for the controller circuitry. A second power supply module provides dc potentials for the PA circuitry. Each power supply module is equipped with an ac line fuse. The following text presents the procedures to remove the power supply modules.
2-67. Controller Power Supply Removal. To remove the controller power supply, perform the following procedure. IPA component locations are presented in Figure 2-4 at the end of this section.

WARNING

DISCONNECT ALL TRANSMITTER PRIMARY POWER

 BEFORE PROCEEDING.
WARNING

2-68. Disconnect all transmitter primary power.
2-69. Remove all the rear access panel Phillips-Head screws.
2-70. Remove the access panel.
2-71. Remove the two Knurled nuts securing fan B2 to the interior panel.
2-72. Remove the fan.
2-73. Remove the two stand-offs securing the controller power supply module to the side panel.
2-74. Disconnect the wiring and remove the controller power supply module.
2-75. Check the power supply fuse. If the power supply fuse has not blown, contact the Broadcast Electronics Customer Service Department. If desired, refer to APPENDIX A and the Computer Products power supply schematic diagram for additional power supply troubleshooting information.
$2-76$. Once power supply troubleshooting is complete, re-install the supply by reversing the preceding procedure.
2-77. Main Power Supply Assembly Removal. The main power supply assembly (PA RF power amplifier power supply module) can be easily removed from the IPA chassis in the event of a failure. The power supply is a modular assembly designed to be removed from the front of the IPA (refer to Figure 2-3). To remove the main power supply assembly, refer to Figure 2-3 and proceed as follows:

warning

2-78. Disconnect all transmitter primary power before proceeding.
2-79. Refer to IPA CONTROLLER FRONT PANEL REMOVAL in the preceding text and perform the procedure to remove the IPA controller front panel.
2-80. Rotate the power supply lock knob fully counterclockwise.
2-81. Using the power supply handle, pull the supply from the transmitter chassis.
2-82. Check the power supply fuse. If the fuse has not blown, refer to APPENDIX A and locate the Pioneer Magnetics Troubleshooting Guide For The PM3329BP-5 power supply in APPENDIX A. Use the guide to troubleshoot the power supply.

2-83. Once power supply troubleshooting is complete, re-install the supply by reversing the preceding procedure.

2-84. IPA TROUBLESHOOTING PROCEDURES. Table $2-1$ presents troubleshooting information for the IPA unit. Refer to Table 2-1 to isolate the problem to a specific assembly. Once the trouble is isolated, refer to the theory of operation and schematic diagrams to assist in problem resolution.

FIGURE 2-3. MAIN POWER SUPPLY REMOVAL

TABLE 2-1. IPA TROUBLESHOOTING
(Sheet 1 of 2)

SYMPTOM	CIRCUITRY TO CHECK
1. LOW OUTPUT POWER 2. MODULE DRIVE INDICATOR EXTINGUISHED 3. MODULE STATUS INDICATOR ILLUMINATES YELLOW 4. RESET INDICATOR ILLUMINATED	1. Depress the reset switch. 2. Check the exciter forward power. The forward power must be 20 W . The power supply will present a fault with low RF drive. 3. If the exciter forward power is low, refer to the exciter manual and troubleshoot the exciter. 4. If the correct exciter forward power is present, check the voltage at TP-12 on the IPA controller circuit board. The voltage at TP-12 is 10% of the power supply voltage. The voltage must be equal to the normal operating voltage. 5. If the PA voltage is normal, defective RF power amplifier module. 6. If the PA voltage is low, adjust the front-panel IPA POWER ADJUST control to increase the PA voltage until the MODULE STATUS indicators illuminate green.
1. RESET INDICATOR ILLUMINATED 2. POWER SUPPLY INDICATOR ILLUMINATED 3. RED MODULE STATUS INDICATOR	1. Depress the reset switch. 2. If the reset indicator does not display normal indications, check the power supply.
1. RESET INDICATOR ILLUMINATED 2. OVER TEMP INDICATOR ILLUMINATED 3. RED MODULE STATUS INDICATOR	1. Depress the reset switch. 2. If the reset indicator does not display normal indications, check the flushing fans and the filter.
1. RESET INDICATOR ILLUMINATED 2. VSWR INDICATOR ILLUMINATED 3. RED MODULE STATUS ILLUMINATED	1. Depress the reset switch. 2. If the reset indicator does not display normal indications, use the transmitter MULITMETER to check the IPA reflected power. The reflected power must be less than 30 watts. 3. If the reflected power is greater than 30 watts, adjust the transmitter INPUT TUNING control for a reflected power indication of less than 30 watts. 4. If the reflected power is less than 30 watts, check the RF power module logic circuit board.

TABLE 2-1. IPA TROUBLESHOOTING

(Sheet 2 of 2)

SYMPTOM	CIRCUITRY TO CHECK
1. IPA OFF WITH NO FRONT PANEL INDICATIONS	1. Ensure primary ac power is applied to the unit and ensure the POWER switch is operated to on.
2. If the primary ac power is on, defective controller power supply.	
1. IPA OFF	
2. NO INDICATORS MODULE STATUS INDICATORS	1. Defective controller power supply +15 V output.
1. IPA OFF WITH FRONT PANEL INDICATIONS 2. MODULE STATUS INDICATORS ILLUMINATE YELLOW	1. Defective controller power supply +5V output.
1. IPA OFF WITH FRONT PANEL INDICATIONS 2. MODULE STATUS INDICATORS ILLUMINATE YELLOW	1. Defective controller power supply -15V output.
1. MODULE STATUS INDICATOR	1. Defective module. Troubleshoot the module.
ILLUMINATES YELLOW	1. Check the MOVs, main power supply, controller
1. CIRCUIT BREAKER OPERATION	power supply, and the circuit breaker.

2-85. IPA COMPONENT LOCATIONS. Figure 2-4 presents the IPA component locations. Refer to Figure 2-4 as required during the troubleshooting procedures to locate components within the IPA.

2-86. POWER AMPLIFIER POWER SUPPLY MODULE TROUBLESHOOTING. The IPA is equipped with a modular switching power supply unit. The unit is constructed with a fuse and cooling fan. When a power supply module fault indicator illuminates, check the following:

1. The PA power supply module is equipped with temperature overload protection. If the power supply module temperature overload occurs, the modules must be reset. To reset the power supply module, proceed as follows:
A. Depress the IPA RESET switch/indicator.
B. Wait approximately 1 minute.
C. Depress the FILAMENT ON switch/indicator. The module will return to operation if the problem was associated with a temperature overload.
2. If the power supply module does not return to operation, check the rotation of the fan. Ensure the fan is operating.
3. If the fan is not operating, proceed as follows:

> THE POWER AMPLIFIER POWER SUPPLY MODULE WILL BE DAMAGED IF THE MODULE IS REMOVED OR INSTALLED WITH POWER ENERGIZED. DISCONNECT ALL TRANSMITTER POWER PRIOR TO REMOVING OR INSTALLING THE POWER AMPLIFIER MODULE.
A. De-energize all transmitter primary power.
B. Refer to IPA CONTROLLER FRONT PANEL REMOVAL in the preceding text and perform the procedure to remove the IPA controller front panel.
C. Loosen the power supply module lock knob on the front panel.
D. Remove and re-insert the power supply module and secure the lock knob.
E. Energize the transmitter primary power and operate the transmitter. The module will return to operation if the problem is associated with improper module seating.
4. If the power supply module problem remains, refer to APPENDIX A and locate the Pioneer Magnetics Troubleshooting Guide For The PM3329BP-5 power supply. Use the guide to troubleshoot the power supply.

CAUTION
CAUTION

> REMOVING OR INSTALLING THE POWER AMPLIFIER MODULE WITH THE TRANSMITTER ENERGIZED MAY RESULT IN DAMAGE TO THE MODULE. DO NOT REMOVE/INSERT THE POWER AMPLIFIER MODULE WITH THE TRANSMITTER ENERGIZED.

2-87. POWER AMPLIFIER MODULE TROUBLESHOOTING/REPAIR. The IPA RF power amplifier module requires specialized equipment for troubleshooting and repair operations. Therefore, almost all power amplifier module troubleshooting and repair can not be performed in the field. If a power amplifier module is determined to be defective, contact the Broadcast Electronics Customer Service department for: 1) troubleshooting information and 2) information on a power amplifier module exchange program (refer to the following text).
2-88. Power Amplifier Module Exchange Program. If the power amplifier module is determined to be defective, Broadcast Electronics has established a power amplifier module exchange program. The program allows the customer to: 1) exchange a defective module for a reconditioned module or 2) obtain a module on loan during the repair of the defective module. Terms of the program are available from the Broadcast Electronics Customer Service Department.

FIGURE 2-4. IPA COMPONENT LOCATOR (Sheet 1 of 2)

FIGURE 2-4. IPA COMPONENT LOCATOR (Sheet 2 of 2)

SECTION III IPA PARTS LIST

3-1. INTRODUCTION.

3-2. This section provides descriptions and part numbers of electrical components, assemblies, and selected mechanical parts required for maintenance of the Broadcast Electronics IPA unit. Each table entry in this section is indexed by reference designators appearing on the applicable schematic diagram.

TABLE 3-1. IPA PARTS LIST INDEX

TABLE	DESCRIPTION	PART NO.	PAGE
$3-2$	INTERMEDIATE POWER AMPLIFIER ASSEMBLY	$959-0421$	$3-2$
$3-3$	MOTHERBOARD CIRCUIT BOARD ASSEMBLY	$919-0400-001$	$3-2$
$3-4$	POWER SUPPLY MOTHERBOARD CIRCUIT BOARD	$919-0423$	$3-2$
	ASSEMBLY		
$3-5$	IPA CONTROL BOARD CIRCUIT BOARD ASSEMBLY	$919-0434-001$	$3-3$
$3-6$	IPA STATUS INDICATOR BOARD CIRCUIT BOARD	$919-0434-002$	$3-6$
	ASSEMBLY		
$3-7$	RFI FILTER CIRCUIT BOARD ASSEMBLY	$919-0562$	$3-6$
$3-8$	FM-IPA HARNESS ASSEMBLY	$949-0400-003$	$3-7$
$3-9$	RF AMPLIFIER MODULE ASSEMBLY	$959-0412-012$	$3-8$
$3-10$	RF AMPLIFIER CIRCUIT BOARD ASSEMBLY	$919-0416-010$	$3-8$
$3-11$	RF AMPLIFIER CABLES ASSEMBLY	$949-0405$	$3-9$
$3-12$	RF AMPLIFIER LOGIC CIRCUIT BOARD ASSEMBLY	$919-0417-012$	$3-9$
$3-13$	RF AMPLIFIER MODULE DIRECTIONAL COUPLER	$919-0418-012$	$3-12$
$3-14$	CIRCUIT BOARD ASSEMBLY		
	RF AMPLIFIER MODULE LOW-PASS FILTER CIRCUIT	$919-0418-013$	$3-12$
	CIRCUIT BOARD ASSEMBLY		

TABLE 3-2. INTERMEDIATE POWER AMPLIFIER ASSEMBLY - 959-0421

REF. DES.	DESCRIPTION	PART NO.	QTY.
B1, B2	Fan, 6 inch (15.24 cm), 250 ft3/min 220V ac, 50/60 Hz, 40 Watt	$380-7650$	2
CB1	Circuit Breaker, 240V, 10 Amperes, 2-Pole	$341-0030$	1
J4, J5	Connector Housing, 2-Pin, Male	$418-0702$	2
J10	Bulkhead Receptacle, Type N. Jack-to-Jack, UG30/U	$418-0035$	1
MOV1 thru	Metal-Oxide Varistor, B40K275, 275V, 1680 Joules	$140-0021$	3
MOV3			$412-0090$
TB1	Barrier Strip, 9 Terminal	$412-0002$	1
----	Barrier Strip, 2 Terminal	$380-5502$	1
----	Filter, Fan, Pamotor 5502	$407-0162$	1
---	Air Filter, 9 3/4 X19 3/4 X 3/4 Inches (24.77 X 50.17 X 1.91 cm)	$417-0036$	2
----	Pin Connector	$540-0006$	4
----	Power Supply, Computer Products, NFN40-7610, -15V $\pm 5 \%$,	1	
	\quad +5 $\pm 2 \%$, +15V +10\%/-3\%, 85V to 264V Operation, 40W		
----	Power Supply, Pioneer Magnetics, PM3329BP-5	$540-0016-001$	1
	48D42-2F-4D-6B-127-128-R, 48 Adjustable, 2 kW, Power Factor		
	Corrected	$919-0400-001$	1
----	Motherboard Circuit Board Assembly, FM-500C	$919-0423$	1
----	Power Supply Mother Board Circuit Board Assembly, FM-1C	$919-0434-001$	1
----	IPA Control Board Circuit Board Assembly .	$919-0434-002$	1
----	IPA Status Indicator Circuit Board Assembly	$919-0562$	1
----	RFI Filter, FMSS Circuit Board Assembly	$949-0400-003$	1
----	FM-IPA Harness Assembly	$959-0412-012$	1

TABLE 3-3. MOTHERBOARD CIRCUIT BOARD ASSEMBLY - 919-0400-001

REF. DES.	DESCRIPTION	PART NO.	QTY.
C5	Capacitor, Electrolytic, $47 \mathrm{uF}, 35 \mathrm{~V}$	$020-4770$	
C7	Capacitor, Mylar, $0.1 \mathrm{uF} \pm 10 \%, 100 \mathrm{~V}$	$030-1053$	1
J601	Receptacle, 26-Pin Dual In-line	$418-2602$	1
J603	Connector, Female	$417-0322$	1
R3	Resistor, .005 Ohm $\pm 3 \%, 5 \mathrm{~W}, \mathrm{WW}$	$139-0007$	1
R5	Resistor, 10 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	$100-1051$	1
----	Assembly, Motherboard RF Cable	$949-0417$	1
---	Blank, Motherboard Circuit Board	$519-0400$	1
			1

TABLE 3-4. POWER SUPPLY MOTHERBOARD CIRCUIT BOARD ASSEMBLY- 919-0423

REF. DES.	DESCRIPTION	PART NO.	QTY.
J24	Connector, Housing, 6-Pin, PCB Mount	$417-0677$	1
J25	Connector, For Pioneer Power Supplies, 29-Pin	$417-2900$	1
----	Blank, Power Supply Motherboard Circuit Board	$519-0423$	1

TABLE 3-5. IPA CONTROL BOARD CIRCUIT BOARD ASSEMBLY- 919-0434-001
(Sheet 1 of 4)

REF. DES.	DESCRIPTION	PART NO.	QTY.
C1 thru C6	Capacitor, Monolythic Ceramic, $0.1 \mathrm{uF} \pm 20 \%$, 50 V	003-1054	6
C7	Capacitor, Electrolytic, 10 uF, 50V	023-1076	1
C8 thru C16	Capacitor, Monolythic Ceramic, $0.1 \mathrm{uF} \pm 20 \%$, 50 V	003-1054	9
C8, C9	Capacitor, Electrolytic, $1 \mathrm{uF}, 50 \mathrm{~V}$	024-1064	2
C17	Capacitor, Electrolytic, 100 uF $\pm 10 \%$, 25V, Low-Leakage	023-1085	1
C20 thru C34	Capacitor, Monolythic Ceramic, $0.1 \mathrm{uF} \pm 20 \%$, 50 V	003-1054	15
C35, C36	Capacitor, Ceramic, $47 \mathrm{pF} \pm 5 \%, 50 \mathrm{~V}$	003-4712	2
D1 thru D15	Diode, 1N4148, Silicon, 75V @ 0.3 Amperes	203-4148	15
D16	Diode, Zener, 1N4733A, 5.1V $\pm 5 \%$, 1W	200-4733	1
D17, D18	Diode, 1N4005, Silicon, 600V @ 1 Ampere	203-4005	2
D19	Diode, Zener, 1N4732A, $4.7 \mathrm{~V} \pm 1 \%$, 1W	200-4732	1
D20 thru D22	Diode, 1N4148, Silicon, 75V @ 0.3 Amperes	203-4148	3
D23	Diode, 1N4005, Silicon, 600V @ 1 Ampere	203-4005	1
D24	Diode, 1N4148, Silicon, 75V @ 0.3 Amperes	203-4148	1
J701	Connector, Printed Circuit Board Mounting, 10-Pin (Dual 5)	418-1003	1
J703	Receptacle, 26-Pin Dual In-line	418-2602	1
J704	Socket, 4-Pin	418-0255	1
J705	Connector, Male, 20-Pin PCB Mount	417-0230	1
J706	Receptacle, 26-Pin Dual In-line	418-2602	1
J707	Receptacle, Male, 20-Pin In-Line	417-0200	1
J711	Receptacle, Male, 2-Pin In-line	417-4004	1
J712, J713	Receptacle, Male, 3-Pin In-line	417-0003	2
J714 thru J718	Receptacle, Male, 2-Pin In-line	417-4004	5
J720	Receptacle, Male, 3-Pin In-line	417-0003	1
P711 thru P719	Jumper, Programmable, 2-Pin	340-0004	9
Q1 thru Q5	Transistor, 2N27000, FET, N-Channel, TO-92 Case	210-7000	5
Q6	Field-Effect-Transistor, J270, P-Channel JFET, TO-92 Case	210-0270	1
R1, R2	Resistor, 100 Ohm $\pm 1 \%$, 1/4W	100-1031	2
R3 thru R5	Resistor, $100 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	103-1062	3
R6	Resistor, $12.4 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-1245	1
R7	Resistor, $2.49 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-2494	1
R8	Resistor, 100 Ohm $\pm 1 \%$, 1/4W	100-1031	1
R9 thru R11	Resistor, $100 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	103-1062	3
R12, R13	Resistor, 10 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	100-1051	2
R14	Resistor, 100 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-1062	1
R15	Potentiometer, $10 \mathrm{k} \mathrm{Ohm} \pm 10 \%$, 1/2W	177-1054	1
R16, R17	Resistor, 100 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-1062	2
R18	Resistor, $1 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	100-1041	1
R19, R20	Resistor, $100 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-1062	2
R21	Resistor, $10 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	100-1051	1
R22	Resistor, $11.0 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-1105	1
R23	Resistor, $4.02 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-4024	1
R24	Resistor, 10 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	100-1051	1
R25	Potentiometer, 10 k Ohm $\pm 10 \%$, $1 / 2 \mathrm{~W}$	177-1054	1
R26	Resistor, $49.9 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-4951	1
R27	Resistor, $40.2 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-4025	1
R28	Resistor, $11.3 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-1135	1

TABLE 3-5. IPA CONTROL BOARD CIRCUIT BOARD ASSEMBLY- 919-0434-001
(Sheet 2 of 4)

REF. DES.	DESCRIPTION	PART NO.	QTY.
R29	Resistor, $3.83 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-3841	1
R30	Resistor, $10 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	100-1051	1
R31	Resistor, $1 \mathrm{Meg} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-1007	1
R33 thru R36	Resistor, $1 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	100-1041	4
R37	Resistor, $10 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	100-1051	1
R38	Resistor, $40.2 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-4025	1
R39	Resistor, 100 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-1062	1
R40	Resistor, 10 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	100-1051	1
R41	Resistor, $1 \mathrm{Meg} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-1007	1
R43	Resistor, 1 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	100-1041	1
R44	Resistor, $6.04 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-6044	1
R45	Potentiometer, $2 \mathrm{k} \mathrm{Ohm} \pm 10 \%$, 1/2W	177-2044	1
R46	Resistor, $10 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	100-1051	1
R47	Resistor, 7.50 k Ohm $\pm 1 \%$, 1/4W	103-7541	1
R48, R49	Resistor, $100 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	103-1062	2
R50	Resistor, $102 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	103-1026	1
R51	Resistor, $33.2 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	103-3325	1
R52	Resistor, 10 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	100-1051	1
R53	Resistor, 619 Ohm $\pm 1 \%$, 1/4W	103-6193	1
R54	Resistor, $4.99 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	100-5041	1
R55	Resistor, 100 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-1062	1
R56	Resistor, $34 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-3405	1
R57, R58	Resistor, $100 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	103-1062	2
R59	Resistor, $8.06 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-8064	1
R60	Resistor, $1 \mathrm{Meg} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-1007	1
R61	Resistor, 1 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	100-1041	1
R62	Resistor, 102 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-1026	1
R63	Resistor, $33.2 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-3325	1
R64	Resistor, $10 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	100-1051	1
R65	Resistor, $619 \mathrm{Ohm} \pm 1 \%$, 1/4W	103-6193	1
R66	Resistor, $4.99 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	100-5041	1
R67	Resistor, $100 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	103-1062	1
R68	Resistor, 34 k Ohm $\pm 1 \%$, 1/4W	103-3405	1
R69	Resistor, 100 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-1062	1
R70	Resistor, $10 \mathrm{Ohm} \pm 5 \%, 1 / 4 \mathrm{~W}$	100-1024	1
R71, R72	Resistor, $33.2 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-3325	2
R73	Resistor, $1 \mathrm{Meg} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-1007	1
R74	Resistor, 10 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	100-1051	1
R75	Resistor, 19.1 k Ohm $\pm 1 \%$, 1/4W	103-1915	1
R76	Resistor, $33.2 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-3325	1
R77, R78	Resistor, $40.2 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-4025	2
R79	Resistor, $9.76 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-9764	1
R80	Resistor, 1 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	100-1041	1
R81, R82	Resistor, $14.3 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-1435	2
R83	Resistor, $1 \mathrm{Meg} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-1007	1
R84	Resistor, $24.3 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-2435	1
R85	Resistor, 19.1 k Ohm $\pm 1 \%$, 1/4W	103-1915	1

TABLE 3-5. IPA CONTROL BOARD CIRCUIT BOARD ASSEMBLY- 919-0434-001
(Sheet 3 of 4)

REF. DES.	DESCRIPTION	PART NO.	QTY.
R86	Resistor, $20.0 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-2051	1
R87	Resistor, $49.9 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	103-4951	1
R88	Resistor, $100 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	103-1062	1
R89	Resistor, 1 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	100-1041	1
R90	Resistor, $10 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	100-1051	1
R91, R92	Resistor, $100 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-1062	2
R93	Resistor, $1 \mathrm{Meg} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	103-1007	1
R94	Resistor, $20.0 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-2051	1
R95	Resistor, $20.5 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-2055	1
R96	Resistor, 20.0 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-2051	1
R97	Resistor, $24.9 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-2495	1
R98	Resistor, $75 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	103-7505	1
R99	Potentiometer, $10 \mathrm{k} \mathrm{Ohm} \pm 10 \%$, $1 / 2 \mathrm{~W}$	177-1054	1
R100, R101	Resistor, $10 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	100-1051	2
R102	Resistor, $100 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	103-1062	1
R103	Resistor, $1 \mathrm{Meg} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	103-1007	1
R104, R105	Resistor, $100 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-1062	2
R106	Resistor, 1 Meg Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-1007	1
R107	Resistor, $40.2 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	103-4025	1
R108, R109	Resistor, 20.0 k Ohm $\pm 1 \%$, 1/4W	103-2051	2
R110	Resistor, $4.99 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	100-5041	1
R110	Resistor, 4.87 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-4874	1
R111, R112	Resistor, $10 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	100-1051	2
R113	Resistor, $49.9 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	103-4951	1
R114	Resistor, $100 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	103-1062	1
R115	Resistor, $200 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	103-2061	1
R116	Resistor, $2.49 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-2494	1
R117, R118	Resistor, 88.7 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-8875	2
TP1 thru TP16	Terminal, Test Point, Oval, Red	413-0106	16
U1	Integrated Circuit, CD4066BE, Quad Bilateral Switch, CMOS, 14-Pin DIP	225-0004	1
U2	Integrated Circuit, MC14106BCP, Hex Schmitt Trigger, 14-Pin	228-4106	1
U3	Integrated Circuit, LM339AN, Quad Comparator, 14-Pin DIP	221-0339	1
U4	Integrated Circuit, ULN2004, 7 NPN Darlington Driver Pack, 16-Pin DIP	226-2004	1
U5	Integrated Circuit, MC14044BP, Quad NAND R-S Latch, CMOS, 16-Pin DIP	228-4044	1
U6, U7	Integrated Circuit, TLO74CN, Quad JFET-Input Operational Amplifier, 14-Pin DIP	221-0074	2
U8	Integrated Circuit, LM358N, Dual Operational Amplifier, 8-Pin DIP	221-0358	1
U9, U10	Integrated Circuit, TLO74CN, Quad JFET-Input Operational Amplifier, 14-Pin DIP	221-0074	2
U11	Integrated Circuit, TL072CP, Dual JFET-Input Operational Amplifier, 8-Pin DIP	221-0072	1

TABLE 3-5. IPA CONTROL BOARD CIRCUIT BOARD ASSEMBLY- 919-0434-001
(Sheet 4 of 4)

REF. DES.	DESCRIPTION	PART NO.	QTY.
U12	Integrated Circuit, TLO74CN, Quad JFET-Input Operational Amplifier, 14-Pin DIP	$221-0074$	
Socket, 14-Pin DIP			
XU1 thru XU3			
XU4, XU5	Socket, 16-Pin DIP	$417-1404$	3
XU6, XU7	Socket, 14-Pin DIP	$417-1604$	2
XU8	Socket, 8-Pin DIP	$417-1404$	2
XU9, XU10	Socket, 14-Pin DIP	$417-0804$	1
XU11	Socket, 8-Pin DIP	$417-1404$	2
XU12	Socket, 14-Pin DIP	$417-0804$	1
----	Blank, IPA Control Board Circuit Board	$417-1404$	1
		$519-0434-001$	1

TABLE 3-6. IPA STATUS INDICATOR BOARD CIRCUIT BOARD ASSEMBLY -

REF. DES.	DESCRIPTION	PART NO.	QTY.
C200	Capacitor, Monolythic Ceramic, $0.1 \mathrm{uF} \pm 20 \%, 50 \mathrm{~V}$	$003-1054$	1
DS200 thru	Indicator, LED, Red, 521-9212, $1.7 \mathrm{~V} @ 50 \mathrm{~mA}$ Maximum	$323-9217$	3
DS202			
J201	Connector Header, 10-Pin Right Angle, PCB Male Header	$417-1023$	1
R200 thru	Resistor, $1 \mathrm{k} \mathrm{Ohm} \pm 5 \%, 1 / 2 \mathrm{~W}$	$110-1043$	4
R203			
R204	Resistor, 6650 Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	$103-6641$	1
R205	Potentiometer, 10 k Ohm, 12 Turn, Vertical Adjust	$177-1058$	1
R206	Resistor, 1 Ohm $\pm 5 \%, 1 / 4 \mathrm{~W}$	$100-1013$	1
S200	Switch, SPDT, MOM MP Series, 1 Red, C\&K	$340-0030$	1
----	Blank, IPA Status Indicator Circuit Board	$519-0434-002$	1

TABLE 3-7. RFI FILTER CIRCUIT BOARD ASSEMBLY - 919-0562
(Sheet 1 of 2)

REF. DES.	DESCRIPTION	PART NO.	QTY.
C201 thru	Capacitor, Monolythic Ceramic, $0.1 \mathrm{uF} \pm 20 \%, 50 \mathrm{~V}$	$003-1054$	18
C218			
C221 thru	Capacitor, Monolythic Ceramic, $0.1 \mathrm{uF} \pm 20 \%, 50 \mathrm{~V}$	$003-1054$	
C229			

TABLE 3-7. RFI FILTER CIRCUIT BOARD ASSEMBLY - 919-0562

(Sheet 2 of 2)

REF. DES.	DESCRIPTION	PART NO.	QTY.
D19 thru D25	Bidirectional Zener Transient Voltage Suppressor, Motorola SA18C Or SA18CA, +/-18V	201-0040	7
FL1 thru FL26	EMI Suppression Filter, 10,000 pF $\pm 30 \%$, 3-Pin	411-0001	26
J19	Connector, PC 26 Positions, ANSLEY 609	418-2601	1
J20	Receptacle, 25-Pin	417-2500	1
J21, J24	Connector, 2-Pin	417-0700	2
J22	Socket, 4-Pin	418-0255	1
R201 thru R211	Resistor, 51.1 Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-5112	11
R212 thru R217	Resistor, 1 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	100-1041	6
R218 thru R220	Resistor, 100 Ohm $\pm 5 \%, 1 / 2 \mathrm{~W}$	110-1033	3
$\begin{aligned} & \text { R221 thru } \\ & \text { R223 } \end{aligned}$	Resistor, 1 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	100-1041	3
R224, R225	Resistor, Power, 47 Ohm $\pm 5 \%$, 3 1/4W, W/W	132-4721	2
$\begin{aligned} & \text { R226, R227, } \\ & \text { R229 } \end{aligned}$	Resistor, 51.1 Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-5112	3
R228	Resistor, 1 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	100-1041	1
----	Blank, RFI Filter Board Circuit Board	519-0562	1

TABLE 3-8. FM-IPA HARNESS ASSEMBLY - 949-0400-003 (Sheet 1 of 2)

REF. DES.	DESCRIPTION	PART NO.	QTY.
J1	Connector, 2 Pole 3 Wire, 15 Amperes, 250V	$418-0320$	
J2	Connector, Male, PLA03M1B00	$417-0380$	1
P2	Connector, Female, PLA03F1000-135.0	$417-0379$	1
P4, P5	Connector Housing, 2-Pin, Female	$418-0701$	1
P6	Housing, SL-156, 3 Position	$417-0306$	2
P7	Housing, SL-156, 6 Position	$417-0606$	1
P19	Plug, Ribbon Cable, 26-Pin Dual In-line	$418-2600$	1
P24	Connector Housing, 6-Pin	$418-0670$	1
P201	Socket, Connector, 10-Pin	$417-1003$	1
P601	Plug, Ribbon Cable, 26-Pin Dual In-line	$418-2600$	1
P701	Socket, Connector, 10-Pin	$417-1003$	1
P703	Plug, Ribbon Cable, 26-Pin Dual In-line	$418-2600$	1
P705	Receptacle, 20-Pin	$417-0176$	1
P706	Plug, Ribbon Cable, 26-Pin Dual In-line	$418-2600$	1
----	Crimp Terminal, AMP 640707-1	$410-2478$	1
----	Pins, Connector	$417-0053$	6
----	Contact Housing, 4-Pin In-line	$417-0138$	18

TABLE 3-8. FM-IPA HARNESS ASSEMBLY - 949-0400-003
(Sheet 2 of 2)

REF. DES.	DESCRIPTION	PART NO.	QTY.
---	Keying Plug MOD IV 87077 AMP	$417-0224$	1
---	Connector, FC112N2, Crimp Contact	$417-0372$	3
----	Connector, MC112N, Crimp Contact	$417-0381$	3
---	Pins, Crimp Type	$417-8766$	3

TABLE 3-9. RF AMPLIFIER MODULE ASSEMBLY - 959-0412-012

REF. DES.	DESCRIPTION	PART NO.	QTY.
C13, C16, C27, Capacitor, Ceramic Chip, $470 \mathrm{pF} \pm 5 \%, 200 \mathrm{~V}$	$009-4723$	4	
C30			
C14, C15, C28	Capacitor, Ceramic Chip, $270 \mathrm{pF} \pm 5 \%, 300 \mathrm{~V}$	$009-2723$	4
C29			
C39, C40	Capacitor, Ceramic Chip, $47 \mathrm{pF} \pm 5 \%, 500 \mathrm{~V}$	$009-1513$	2
C41, C42	Capacitor, Ceramic Chip, $15 \mathrm{pF} \pm 5 \%, 500 \mathrm{~V}$	$009-1513$	2
Q1, Q2	Transistor, RF Power Mosfet, SD-2932, 175 MHz, 50V, 300W	$210-2932$	2
R1	Resistor, 50 Ohm $\pm 1 \%, 20 \mathrm{~W}$	$132-5002$	1
R201	Resistor, 50 Ohm, 250W	$131-5030$	1
T1, T2	Transformer, RF Amplifier Output	$370-0052$	2
----	RF Amplifier Module Logic Circuit Board Assembly	$919-0417-012$	1
----	RF Amplifier Module Directional Coupler Circuit	$919-0418-012$	1
	Board Assembly		
----	RF Amplifier Circuit Board Assembly	$919-0416-010$	1
----	RF Amplifier Module Low-Pass Filter Circuit Board Assembly	$919-0418-013$	1
----	Blank, Module Combiner Shield Circuit Board	$519-0419$	1
----	Blank, Module Combiner Circuit Board	$519-0420$	2

TABLE 3-10. RF AMPLIFIER CIRCUIT BOARD ASSEMBLY - 919-0416-010

REF. DES.	DESCRIPTION	PART NO.	QTY.
L1, L2	Inductor, RF Amp Decoupling	$360-0146$	
P803	Connector, N Type, Right Angle	$417-0235$	2
R27, R28	Resistor, 22 Ohm, 3W, $\pm 5 \%$	$130-2243$	1
W6, W8	Input Transformer	$370-0721$	2
----	RF Amp Circuit Board Assembly	$919-0416-012$	2
---	RF Amp Harness Assembly	$949-0405$	1

TABLE 3-11. RF AMPLIFIER CIRCUIT BOARD ASSEMBLY - 919-0416-012

REF. DES.	DESCRIPTION	PART NO.	QTY.
C1, C2	Capacitor, Electrolytic, 47 uF, 63V	020-4770	2
C3, C4	Capacitor, Ceramic, Variable, 4 to $25 \mathrm{pF}, 100 \mathrm{~V}$	090-0004	2
C6, C7	Capacitor, Ceramic Chip, $1000 \mathrm{pF} \pm 5 \%$, 100V	009-1032	2
C9, C23	Capacitor, Porcelain, $33 \mathrm{pF} \pm 5 \%, 500 \mathrm{~V}$	009-3313	2
C10, C24	Capacitor, Ceramic, Variable, 4 to $25 \mathrm{pF}, 100 \mathrm{~V}$	090-0004	2
C11, C12	Capacitor, Ceramic Chip, $1000 \mathrm{pF} \pm 5 \%$, 100V	009-1032	2
C17	Capacitor, Mica, Feedthru, $1000 \mathrm{pF} \pm 10 \%$, 350 V	046-1030	1
C20, C21	Capacitor, Ceramic Chip, $1000 \mathrm{pF} \pm 5 \%, 100 \mathrm{~V}$	009-1032	2
C23	Capacitor, Ceramic Chip, $1000 \mathrm{pF} \pm 5 \%, 500 \mathrm{~V}$	009-5613	1
C25	Capacitor, Ceramic Chip, $1000 \mathrm{pF} \pm 5 \%$, 100V	009-1032	1
C31	Capacitor, Mica, Feedthru, $1000 \mathrm{pF} \pm 10 \%$, 350 V	046-1030	1
C34, C38	Capacitor, Ceramic Chip, $470 \mathrm{pF} \pm 5 \%, 200 \mathrm{~V}$	009-4723	2
C35, C36	Capacitor, Ceramic Chip, $1000 \mathrm{pF} \pm 5 \%, 100 \mathrm{~V}$	009-1032	2
C43	Capacitor, Ceramic Chip, $1000 \mathrm{pF} \pm 5 \%, 100 \mathrm{~V}$	009-1032	1
C45, C47	Capacitor, Ceramic Chip, $470 \mathrm{pF} \pm 5 \%, 200 \mathrm{~V}$	009-4723	2
D1, D2	Diode, Switching, MMBD914LT1, TO-236AB	204-0914	2
D3	Diode, MMBD701LT1, High Voltage, Schottky Barrier Type, 70V, Surface Mount	201-2801	1
DS1, DS2	LED, Tri-Color, Common Cathode	320-0031	2
F1	Fuse, ATC, 25A	334-2500	1
J1, J2, J3, J4	Receptacle, Male, 3-Pin In-Line	408-0300	4
J801	Connector, Header, 40-Pin Dual-In-Line	417-4040	1
L3, L4	Inductor 17.5 nH , Air	366-0017	2
P1, P2, P3, P4	Jumper, Programmable, 2-Pin	340-0004	4
R2	Resistor, Chip, 2.2 k Ohm $\pm 5 \%$, 1/4W	101-2243	1
R3, R9	Potentiometer, $10 \mathrm{k} \mathrm{Ohm} \pm 10 \%$	198-1054	1
R4	Resistor, Chip, 47.5 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	101-0475	1
R5 thru R8	Resistor, Chip, 22 Ohm $\pm 5 \%$, 1/2W	111-2223	4
R10	Resistor, Chip, 2.2 k Ohm $\pm 5 \%$, 1/4W	101-2243	1
R11	Resistor, Chip, 267 k Ohm $\pm 1 \%$, 1/4W	101-2670	1
R13	Resistor, Chip, $2.2 \mathrm{k} \mathrm{Ohm} \pm 5 \%$, 1/4W	101-2243	1
R14	Resistor, Chip, $499 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	101-4990	1
R15	Resistor, Chip, $2.2 \mathrm{k} \mathrm{Ohm} \pm 5 \%$, 1/4W	101-2243	1
R18 thru R21	Resistor, Chip, 22 Ohm $\pm 5 \%$, 1/2W	111-2223	4
R22	Potentiometer, $10 \mathrm{k} \mathrm{Ohm} \pm 10 \%$	198-1054	1
R23, R26	Resistor, Chip, 2.2 k Ohm $\pm 5 \%$, 1/4W	101-2243	2
U1, U2	Integrated Circuit, LM35DZ, Celsius Temperature Sensor, TO-92 Case	220-0035	2
----	Fuse Holder, ATC Type, PCB Mount	415-0015	2
--	Blank RF Amplifier Circuit Board	519-0416-012	1

TABLE 3-12. RF AMPLIFIER CABLES ASSEMBLY - 949-0405

REF. DES.	DESCRIPTION	PART NO.	QTY.
P802	Connector, Male, Circuit Board Right Angle D,	$418-0322$	
W1	Coaxial Cable, RG316/U, Teflon, Impedance: 50 OHM	$621-1359$	1
	Capacitance: $29.3 \mathrm{pF} / \mathrm{ft}$. Nominal		

TABLE 3-13. RF AMPLIFIER LOGIC CIRCUIT BOARD ASSEMBLY - 919-0417-012

(Sheet 1 of 3)

REF. DES.	DESCRIPTION	PART NO.	QTY.
C1	Capacitor, Ceramic Disc, $20 \mathrm{pF} \pm 10 \%, 1 \mathrm{kV}$	002-2013	1
C2	Capacitor, Monolythic Ceramic, $.047 \mathrm{uF} \pm 5 \% 50 \mathrm{~V}$	003-4733	1
C3, C4	Capacitor, Monolythic Ceramic, $0.1 \mathrm{uF} \pm 20 \%$, 50 V	003-1054	2
C5, C6	Capacitor, Monolythic Ceramic, $.047 \mathrm{uF} \pm 5 \% 50 \mathrm{~V}$	003-4733	2
C7 thru C10	Capacitor, Monolythic Ceramic, $0.1 \mathrm{uF} \pm 20 \%$, 50 V	003-1054	4
C11	Capacitor, Monolythic Ceramic, $.047 \mathrm{uF} \pm 5 \% 50 \mathrm{~V}$	003-4733	1
C12 thru C14	Capacitor, Ceramic Disc, $20 \mathrm{pF} \pm 10 \%, 1 \mathrm{kV}$	002-2013	3
C15	Capacitor, Monolythic Ceramic, $0.1 \mathrm{uF} \pm 20 \%, 50 \mathrm{~V}$	003-1054	1
$\begin{aligned} & \text { C16 thru } \\ & \text { C18 } \end{aligned}$	Capacitor, Electrolytic, 10 uF, 35V	023-1076	3
C19	Capacitor, Monolythic Ceramic, $0.1 \mathrm{uF} \pm 20 \%, 50 \mathrm{~V}$	003-1054	1
C20	Capacitor, Electrolytic, 10 uF, 35V	023-1076	1
C21	Capacitor, Monolythic Ceramic, $0.1 \mathrm{uF} \pm 20 \%$, 50 V	003-1054	1
C22	Capacitor, Electrolytic, 10 uF, 35V	023-1076	1
C23, C24	Capacitor, Monolythic Ceramic, $0.1 \mathrm{uF} \pm 20 \%, 50 \mathrm{~V}$	003-1054	2
C25, C26	Capacitor, Ceramic Disc, $20 \mathrm{pF} \pm 10 \%$, 1 kV	002-2013	2
D1 thru D16	Diode, 1N4148, Silicon, 75V @ 0.3 Amperes	203-4148	16
D17	Diode, Zener, 1N4742A, 12V $\pm 5 \%$, 1W	200-4742	1
$\begin{aligned} & \text { D19 thru } \\ & \text { D21 } \end{aligned}$	Diode, 1N4148, Silicon, 75V @ 0.3 Amperes	203-4148	3
D22, D23	Diode, HP5082-2800, High Voltage, Schottky Barrier Type, $70 \mathrm{~V}, 15 \mathrm{~mA}$	201-2800	2
D24, D25	Diode, 1N4148, Silicon, 75V @ 0.3 Amperes	203-4148	2
P801	Receptacle, 40-Pin Dual In-line	417-4041	1
$\begin{aligned} & \text { Q1, Q2, Q5 } \\ & \text { thru Q7 } \end{aligned}$	Transistor, MPSA06, NPN, TO-92 Case	211-0006	5
Q8	Transistor, 2N3906, PNP, Silicon, TO-92 Case	210-3906	1
R1	Resistor Network, 5 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}, 16$-Pin DIP	226-0500	1
R2	Resistor, 499 k Ohm, $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-4996	1
R3	Resistor, 2.74 k Ohm $\pm 1 \%$, 1/4W	103-2744	1
R4	Resistor, 499 k Ohm, $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-4996	1
R5	Potentiometer, $10 \mathrm{k} \mathrm{Ohm} \pm 10 \%$ 1/2W	178-1054	1
R6 thru R8	Resistor, 22.1 k Ohm $\pm 1 \%$, 1/4W	103-2211	3
R9	Resistor, 182 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-1826	1

broadcast
electronics ing

TABLE 3-13. RF AMPLIFIER LOGIC CIRCUIT BOARD ASSEMBLY - 919-0417-012
(Sheet 2 of 3)

REF. DES.	DESCRIPTION	PART NO.	QTY.
R10	Resistor, $22.1 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-2211	1
R11	Potentiometer, $200 \mathrm{Ohm} \pm 10 \%$, 1/2W	177-2035	1
R12	Resistor, $499 \mathrm{k} \mathrm{Ohm}, \pm 1 \%, 1 / 4 \mathrm{~W}$	103-4996	1
R13	Resistor, 2.74 k Ohm $\pm 1 \%$, 1/4W	103-2744	1
R14	Resistor, 8.25 k Ohm $\pm 1 \%$, 1/4W	103-8254	1
R15	Potentiometer, $10 \mathrm{k} \mathrm{Ohm} \pm 10 \%$ 1/2W	178-1054	1
R12	Resistor, 499 k Ohm, $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-4996	1
R16	Resistor, 499 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-4996	1
R17	Resistor, 2.74 k Ohm $\pm 1 \%$, 1/4W	103-2744	1
R18	Resistor, 499 k Ohm, $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-4996	1
R19	Resistor, 240 Ohm $\pm 1 \%$, 1/4W	103-2431	1
R20	Resistor, 499 k Ohm, $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-4996	1
R21	Resistor, $22.1 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-2211	1
R22	Resistor, 162 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-1626	1
R23	Resistor, 332 k Ohm, $\pm 1 \%$, 1/4W	103-3326	1
R24	Resistor, 22.1 k Ohm $\pm 1 \%$, 1/4W	103-2211	1
R25	Potentiometer, $10 \mathrm{k} \mathrm{Ohm} \pm 10 \%$ 1/2W	178-1054	1
R26	Resistor, 2.74 k Ohm $\pm 1 \%$, 1/4W	103-2744	1
R27	Resistor, 499 k Ohm, $\pm 1 \%$, 1/4W	103-4996	1
R28, R29	Resistor, 1 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	100-1041	2
R30	Resistor, 15.8 k Ohm $\pm 1 \%$, 1/4W	103-1585	1
R31, R32	Resistor, 499 k Ohm, $\pm 1 \%$, 1/4W	103-4996	2
R33	Resistor, $1.33 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-1331	1
R34, R50	Resistor, $5.11 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-5141	2
R35	Resistor Network, 8-22 k Ohm 1/4W Resistors, 16-Pin DIP	226-2250	1
R36	Resistor, $221 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	103-2216	1
R37	Resistor, 1 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	100-1041	1
R38	Resistor, 15.8 k Ohm $\pm 1 \%$, 1/4W	103-1585	1
R39	Resistor, $1.33 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-1331	1
R40	Resistor, 1 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	100-1041	1
R41	Resistor, $9.09 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-9041	1
R42	Resistor, 499 k Ohm, $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-4996	1
R43	Resistor, $1 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	100-1041	1
R44, R45	Resistor, $22.1 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-2211	2
R46, R47	Resistor, 1 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	100-1041	2
R48	Resistor, 7.68 k Ohm, $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-7684	1
R51	Potentiometer, 20 k Ohm $\pm 10 \%$, 1/2W	178-2054	1
R52, R80	Resistor, 162 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-1626	2
R53	Resistor, $5.11 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-5141	1
R54	Resistor, $47.5 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-4755	1
R55	Resistor, 1 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	100-1041	1
R56	Resistor, 100 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-1062	1
R57, R58	Resistor, 1 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	100-1041	2
R59, R60	Resistor, 51.1 Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-5112	2
R61	Resistor, 1 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	100-1041	1
R62	Resistor, 5.11 k Ohm $\pm 1 \%$, 1/4W	103-5141	1

TABLE 3-13. RF AMPLIFIER LOGIC CIRCUIT BOARD ASSEMBLY - 919-0417-012
(Sheet 3 of 3)

REF. DES.	DESCRIPTION	PART NO.	QTY.
R63	Resistor, 1 k Ohm $\pm 1 \%$, 1/4W	100-1041	1
R64	Resistor, 5.11 k Ohm $\pm 1 \%$, 1/4W	103-5141	1
R65	Resistor, 499 k Ohm, $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-4996	1
R66	Resistor, $47.5 \mathrm{k} \mathrm{Ohm}, \pm 1 \%, 1 / 4 \mathrm{~W}$	103-4755	1
R67	Resistor, 2.2 M Ohm $\pm 1 \%$, 1/4W	103-2273	1
R68	Resistor, $16.9 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-1695	2
R69	Resistor, 22.1 k Ohm $\pm 1 \%$, 1/4W	103-2211	1
R70	Resistor, 8.25 k Ohm $\pm 1 \%$, 1/4W	103-8254	1
R71	Resistor, 182 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-1826	1
R72	Resistor, 499 k Ohm, $\pm 1 \%$, 1/4W	103-4996	1
R73	Resistor, 78.7 k Ohm $\pm 1 \%$, 1/4W	103-7875	1
R74	Resistor, $2.05 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-2054	1
R75, R76	Resistor, $5.11 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-5141	2
R49, R77	Resistor, $10 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	100-1051	2
R79	Resistor, $332 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	103-3326	1
R81	Resistor, $24.9 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	103-2495	1
R82	Resistor, $11 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	103-1105	1
TP1 thru TP3	Terminal, Test Point, Oval Red	413-0106	3
U1	Integrated Circuit, MPQ3799, Quad Amplifier, PNP, 14-Pin DIP	220-3799	1
U2 thru U6	Integrated Circuit, TLO74CN, Quad JFET-Input Operational Amplifier, 14-Pin DIP	221-0074	5
U7	Integrated Circuit, LM317LZ, Adjustable Positive Voltage Regulator, 1.2 to $37 \mathrm{~V} @ 0.1$ Ampere, TO-92 Case	220-0317	1
----	Blank RF Amplifier Logic Circuit Board	519-0417-012	1

TABLE 3-14. RF AMPLIFIER MODULE LPF/DIRECTIONAL COUPLER CIRCUIT BOARD ASSEMBLY -919-0418-012
 (Sheet 1 of 2)

REF. DES.	DESCRIPTION	PART NO.	QTY.
C101, C104,	Capacitor, Ceramic Chip,10pF,500V,5\%	$009-1013$	3
C105			
C102, C115	Capacitor, Ceramic Chip,15pF,500V,5\%	$009-1513$	2
C103	Capacitor, Ceramic Chip,6.8pF,500V,5\%	$009-6810$	1
C106, C112,	Capacitor, Ceramic Chip,1000pF,100V,5\%	$009-1032$	4
C113, C114			
C107	Capacitor, Ceramic, 47pF, $50 \mathrm{~V}, \pm 5 \%$	$003-4712$	1
C108	Capacitor, Ceramic Chip,56pF,500V,5\%	$009-5613$	1
C109	Capacitor, Ceramic Chip,47pF,500V,5\%	$009-4713$	1
C117, C118	Capacitor, Ceramic,47pF,50V,2\%,SMD	$007-4702-500$	2
C119, C120,	Capacitor, Ceramic,0.1uF,50V,10\%,SMD	note	$007-1044$
C124, C125			4
C121, C123	Capacitor, Ceramic,.001uF,50V,10\%,SMD	$007-1024$	2
C122	Capacitor, Ceramic Chip, 10 UF, 10V, 1206	$007-1075-100$	1
D103,D105	Diode, HP5082-2800, Scottky, $70 \mathrm{~V}, 15 \mathrm{~mA}$	$201-2800$	2

TABLE 3-14. RF AMPLIFIER MODULE LPF/DIRECTIONAL COUPLER CIRCUIT BOARD ASSEMBLY -919-0418-012
(Sheet 2 of 2)

REF. DES.	DESCRIPTION	PART NO.	QTY.
L101	Coil, Molded, .11UH	364-0011	1
L103,L104	Inductor, 68 uH	360-0106	2
L105	Inductor, 100nH Laminated Ceramic, 0805, SMD	366-0100	1
R104,R105	Resistor, 66.5 Ohms,1/4W,1\%	103-6652	2
R109, R110	Resistor,1K Ohm,1/4W,1\%	100-1041	2
$\begin{aligned} & \text { R111,R113, } \\ & \text { R114 } \end{aligned}$	Resistor, Chip,64.9 Ohms,1/10W,1\%,SMD	102-6409	3
R112	Resistor, Chip, 130 Ohms,1/10W,1\%,SMD	102-1300	1
R115	Resistor, $15 \mathrm{Ohm}, 1 / 10 \mathrm{~W}, 1 \%$	102-1510	1
R117, R118	Resistor, Chip, 0 Ohm, 0805,SMD	102-0000	2
U101	IC, True Average power Detector	221-8361	1
U102	Voltage Regulator,78L05AC,Pos Voltage,100mA,SMD	231-7805	1
	Blank RF Amplifier Directional Coupler Circuit Board	519-0418-012	1

TABLE 3-15. RF AMPLIFIER MODULE LOW-PASS FILTER CIRCUIT BOARD ASSEMBLY -919-0418-013

REF. DES.	DESCRIPTION	PART NO.	QTY.
C201	Capacitor, Ceramic Chip, $10 \mathrm{pF} \pm 5 \% 500 \mathrm{~V}$	$009-1013$	1
C202	Capacitor, Ceramic Chip, $15 \mathrm{pF} \pm 5 \%, 500 \mathrm{~V}$	$009-1513$	1
C203	Capacitor, Ceramic Chip, $6.8 \mathrm{pF}, 500 \mathrm{~V}$	$009-6810$	1
C204, C205	Capacitor, Ceramic Chip, $15 \mathrm{pF} \pm 5 \%, 500 \mathrm{~V}$	$009-1013$	1
C206	Capacitor, Ceramic Chip, $56 \mathrm{pF} \pm 5 \% 500 \mathrm{~V}$	$009-5613$	1
C207	Capacitor, Ceramic Chip, $47 \mathrm{pF} \pm 5 \% 500 \mathrm{~V}$	$009-4713$	1
---	Blank RF Amplifier Module Low-Pass Filter Circuit Board	$519-0418-013$	1

SECTION IV
 IPA DRAWINGS

4-1. INTRODUCTION.

4-2. This section provides assembly drawings and schematic diagrams as listed below for the IPA unit.
FIGURE
$4-1$
$4-2$
$4-3$
$4-4$
$4-5$
$4-6$
$4-7$
$4-8$
$4-9$
$4-10$
$4-11$
$4-12$
$4-13$
$4-14$
$4-15$

TITLE
SCHEMATIC DIAGRAM, IPA OVERALL
SCHEMATIC DIAGRAM, FILTER CIRCUIT BOARD
ASSEMBLY DIAGRAM, FILTER CIRCUIT BOARD
SCHEMATIC DIAGRAM, MOTHERBOARD ASSEMBLY
ASSEMBLY DIAGRAM, MOTHERBOARD ASSEMBLY
SCHEMATIC DIAGRAM, IPA CONTROLLER CIRCUIT BOARD ASSEMBLY
SCHEMATIC DIAGRAM, IPA STATUS CIRCUIT BOARD ASSEMBLY
ASSEMBLY DIAGRAM, IPA CONTROLLER CIRCUIT BOARD ASSEMBLY
SCHEMATIC DIAGRAM, IPA POWER SUPPLY MOTHERBOARD ASSEMBLY
ASSEMBLY DIAGRAM, IPA POWER SUPPLY MOTHERBOARD ASSEMBLY
SCHEMATIC DIAGRAM, RF POWER MODULE
SCHEMATIC DIAGRAM, RF AMPLIFIER LOGIC CIRCUIT BOARD
ASSEMBLY DIAGRAM, RF AMPLIFIER LOGIC CIRCUIT BOARD
ASSEMBLY DIAGRAM, RF AMPLIFIER CIRCUIT BOARD BOARD
ASSEMBLY DIAGRAM, RF AMPLIFIER MODULE LOW-PASS FILTER/DIRECTIONAL COUPLER CIRCUIT BOARDS

NUMBER
SB959-0421
SB919-0562
AB919-0562
SB919-0400/-001
AC919-0400/-001
SB919-0434-001

SB919-0434-002

AC919-0434-001
/-002

SA919-0423

AB919-0423

SB959-0412-012
SB919-0417-012

AC919-0417-012

AD919-0416-012

AC919-0418-011
/-012
/-013

TABLE OF CONTENTS

PARAGRAPH
PAGE NO.

```
SECTION I
1-1
1-3
1-9
1-11
1-17
1-19
1-21
1-24
1-30
1-32
1-34
1-37
1-39
1-43
1-46
1-48
1-50
1-52
```

SECTION II
2-1
2-3
2-5
2-7
2-8
2-9
2-28
2-40
2-54
2-55
2-63
2-71
2-78
2-85
2-96
2-106
2-121
2-131
2-140
2-141
2-142
2-146
2-147
2-148
2-155
2-156

TRANSMITTER CONTROLLER THEORY OF OPERATION
INTRODUCTION $1-1$
GENERAL DESCRIPTION $1-1$
FUNCTIONAL DESCRIPTION $1-1$
TRANSMITTER TURN-ON 1-1
TRANSMITTER TURN-OFF $1-2$
REMOTE CONTROL OPERATION 1-2
INTERLOCKS 1-5
OVERLOAD OPERATION 1-5
EMI I/O CIRCUIT BOARD $1-5$
AC POWER FAILURE 1-6
POWER CONTROL OPERATION 1-6
MANUAL POWER CONTROL OPERATION 1-6
AUTOMATIC POWER CONTROL (APC) OPERATION 1-6
VSWR FOLDBACK $1-7$
SOFT START $1-7$
OUTPUT POWER CONTROL $1-8$
PRESET POWER $1-8$
CONTROLLER POWER SUPPLY MODULE $1-8$

TRANSMITTER CONTROLLER MAINTENANCE

INTRODUCTION
 2-1

SAFETY CONSIDERATIONS $2-1$
MAINTENANCE $2-1$
MAIN CIRCUIT BOARD CONTROL ADJUSTMENTS 2-1 OVERLOAD CONTROLS $2-1$
VSWR OVERLOAD THRESHOLD ADJUST 2-1
PLATE OVERLOAD ADJUSTMENT 2-2
SCREEN OVERLOAD ADJUSTMENT $2-5$
GRID OVERLOAD ADJUSTMENT $2-6$
FILAMENT WARM-UP ADJUSTMENT $2-6$
COOL-DOWN ADJUSTMENT $2-7$
RECYCLE ADJUSTMENT $2-7$
WARM-UP DEFEAT ADJUSTMENT $2-7$
FORWARD POWER CALIBRATION $2-8$
OUTPUT POWER METER CALIBRATION 2-9
REFLECTED POWER CALIBRATION 2-9
AM NOISE TEST RECEPTACLE CALIBRATION $2-11$
IPA FORWARD POWER CALIBRATION 2-11
CONTROLLER RESET 2-12
CUSTOMER ADJUSTMENTS - RESET 2-12
TROUBLESHOOTING $2-12$
CONTROLLER COMPONENT LOCATIONS $2-12$
MAIN CIRCUIT BOARD POWER SUPPLY 2-13
CONNECTOR P5
MICROPROCESSOR MODULE $\quad 2-13$
POWER SUPPLY INDICATORS $2-13$
CONTROLLER POWER SUPPLY MODULE 2-13

PARAGRAPH
SECTION III
3-1

SECTION IV
4-1

TABLE

FIGURE
1-1
2-1
2-2

3-1

PARTS LIST

INTRODUCTION

DRAWINGS
INTRODUCTION

LIST OF TABLES

TRANSMITTER CONTROLLER PARTS LIST INDEX
LIST OF ILLUSTRATIONS
DESCRIPTION
TRANSMITTER CONTROLLER BLOCK DIAGRAM CONTROLLER MAIN CIRCUIT BOARD CONTROLS CONTROLLER COMPONENT LOCATIONS

PAGE NO.

3-1

4-1

PAGE NO.
3-1

PAGE NO.
1-3
2-3
2-15

SECTION I
 TRANSMITTER CONTROLLER THEORY OF OPERATION

1-1. INTRODUCTION.

1-2. The following text provides theory of operation with supporting diagrams for the FM-25T/ FM-30T/FM-35T transmitter controller.

1-3. GENERAL DESCRIPTION.

1-4. All transmitter control and monitoring functions are performed by a microprocessor based controller (refer to Figure 1-1). The controller is designed to monitor the status of several transmitter parameters and perform control actions when required. The controller will interface with almost any remote control device.

1-5. The controller is equipped with 12 switch/indicators, 4 overload indicators, and 5 status indicators. Controller processing power is provided by a Z-Soft microcontroller. The microcontroller is housed on a small plug-in circuit board. The microcontroller circuit board is designed to plug directly into a header on the controller main circuit board.

1-6. The controller circuitry includes a front-panel modem port, one rear-panel modem port, one rear-panel local port, and a printer port. The modem ports and the printer port are designed to be used with a future remote monitoring and diagnostic system. The rearpanel local port is for interfacing to a future dual/main/alternate transmitter control system.

1-7. A Lithium battery back-up system is included in the controller design. The battery backup system will maintain the controller memory and other parameters during a power failure. This system allows the transmitter to return to operation after the power failure in the exact same operating conditions.

1-8. A modular switching power supply provides operating potentials for the controller circuitry. Power supply status indications are provided by $+15 \mathrm{~V},-15 \mathrm{~V}$, and +5 V indicators.

1-9. FUNCTIONAL DESCRIPTION.
1-10. The following text presents a description of the major functions performed by the transmitter controller. The text describes controller operations during major transmitter functions such as turn-on and automatic power control.

1-11. TRANSMITTER TURN-ON.
1-12. Commands such as filament on and high voltage on are initiated by the front-panel FILAMENT ON and HIGH VOLTAGE ON switch/indicators. A one-button-start may be selected by depressing only the HIGH VOLTAGE ON switch/indicator. As each switch is depressed, the associated switch/indicator will illuminate to indicate that the selected command has been received and stored.

1-13. Assuming the FILAMENT ON and/or HIGH VOLTAGE ON switch/indicators have been depressed and all internal interlocks are closed, the blower will start. The internal interlock closed condition is identified by the illumination of the front-panel INTERLOCK indicator.

1-14. When the air pressure switch closes: 1) the BLOWER indicator will illuminate, 2) the filament warm-up timer will start, 3) filament voltage will be applied to the PA tube, and 4) the FILAMENT indicator will illuminate. A high-voltage on signal will be output to the high voltage step-start circuitry and the mute command will be removed from the FM exciter: 1) after the filament warm-up delay expires, 2) no overloads exist, 3) all internal interlocks remain closed, 4) the failsafe interlock is closed, 5) the air switch remains closed, and 6) the exciter AFC signal lock status is obtained. The failsafe interlock closed condition is identified by the illumination of the front-panel FAILSAFE indicator. The HIGH VOLTAGE indicator will illuminate to indicate that a high voltage on command has been output from the controller.

1-15. The high voltage on signal is applied to the step driver. The driver will energize the plate supply step relay to apply primary voltage to the plate supply transformer through three limiting resistors. After a 100 millisecond delay, the controller will enable the start driver. The start driver will energize the start contactor and apply the full primary potential to the plate supply transformer. The step circuit will deenergize after being energized for 160 milliseconds. In this manner, the plate supply inrush is limited and the current limiting resistors are subject to heating only during a 100 millisecond interval before start contactor closure. For added reliability, the limiting resistors are disconnected after 160 milliseconds.

1-16. Simultaneous with generation of the high voltage on start signal, the exciter will be enabled and the HIGH VOLTAGE status indicator will illuminate to indicate that the plate supply control signal has been output. The high voltage supply is prevented from stepstarting under full load in this manner.

1-17. TRANSMITTER TURN-OFF.

1-18. When the HIGH VOLTAGE OFF switch/indicator is depressed, the controller will: 1) deenergize the high voltage supply, 2) extinguish the HIGH VOLTAGE ON switch/indicator, and 3) extinguish the HIGH VOLTAGE STATUS indicator. A one-button-stop feature is provided when the FILAMENT OFF switch/indicator is depressed. When the switch/indicator is depressed, the controller will perform the following operations:

1. Mutes the exciter.
2. De-energize the high voltage supply.
3. De-energize the filament supply.
4. Extinguish the FILAMENT ON switch/indicator and the FILAMENT STATUS indicator.
5. Initiate a filament cool-down interval.
6. When the filament cool-down timer delay expires, the blower will de-energize and the BLOWER STATUS indicator will extinguish.

1-19. REMOTE CONTROL OPERATION.
1-20. Transmitter remote control operation is enabled whenever the REMOTE DISABLE switch/indicator is extinguished. Local control of the transmitter is enabled at all times. Remote control inputs are routed: 1) through the controller EMI I/O circuit board, 2) through optical isolators, and 3) connected in parallel with the local inputs. The remote control inputs can be enabled by a HIGH or a ground with proper circuit board programming of header J6 on the main circuit board. Remote metering and status outputs are active at all times.

1-21. INTERLOCKS.

1-22. The internal interlock circuitry consists of a series string of normally closed switches mounted in areas which contain electrical or mechanical hazards. Each switch is mechanically activated by a door or panel to deenergize the entire transmitter when opened. If an internal interlock opens, the transmitter will deenergize immediately. The transmitter must be manually restored to operation after the open interlock is closed. The controller front-panel INTERLOCK indicator will extinguish to indicate an open interlock. If the opened internal interlock is closed before the filament cool-down timer interval expires, the blower will re-energize for the remaining duration of the cool-down cycle and then deenergize. If the air pressure interlock opens, the power supplies will de-energize immediately. When the interlock closes, the transmitter will return to operation automatically.
1-23. The failsafe interlock circuitry consists of an external switch such as from a test load or remote control failsafe circuit connected to the failsafe interlock terminals on the remote interface circuit board. If the failsafe interlock is opened, only the high voltage plate supply will be deenergized. The controller FAILSAFE and HIGH VOLTAGE indicators will extinguish to indicate an open interlock. When the failsafe interlock is closed, the transmitter will return to operation automatically.
1-24. OVERLOAD OPERATION.
1-25. Plate current, screen current, control grid bias supply current, and PA reflected power are monitored for overload conditions. If an overload occurs, the overload initiate an overload control sequence.
1-26. Any overload will illuminate the OVERLOAD indicator and initiate two timed intervals. A timer and counter monitors the number of times an overload occurs during a 60 second interval. A second overload recycle timer delays restoration of the transmitter to operation to allow the condition that prompted the overload to dissipate.
1-27. When the timed interval delaying restoration of the transmitter to operation has expired, the transmitter will recycle back into operation. If no further overloads occur during the 60 second interval following the first overload, the 60 second timer will clear the overload counter. If four overload recycles occur during the 60 second counter/timer interval, the transmitter will deenergize and must be manually reset. This can be done by depressing the OVERLOAD switch/indicator, the FILAMENT ON switch/indicator, and the HIGH VOLTAGE ON switch/indicator. The overload can also be cleared by remote control if remote control is enabled.
1-28. If an overload persists in duration for longer than 0.22 seconds, the controller will consider the overload a short circuit and immediately deenergize the transmitter. The transmitter must then be manually restored to operation after the fault is repaired.
1-29. The overload reset sequence is initiated when the OVERLOAD RESET switch/indicator is depressed. When the switch/indicator is depressed, the following actions will occur.

1. The OVERLOAD RESET switch/indicator and the overload diagnostic indicator (PLATE, SCREEN, GRID, or VSWR) indicator will extinguish.
2. The overload timer/counter will be reset.
3. The overload recycle timer will be reset.
$1-30$. EMI I/O CIRCUIT BOARD.
1-31. All controller inputs and outputs are routed through connectors J1, J2, and J3 mounted to the circuit board. The circuitry consists of PI-section low-pass LC filters effective to 108 MHz and connected in series with each input and output to prevent RF leakage into the controller. Each input/output also contains a transzorb. The transzorb limits the input/ output signal to ± 15 volts.

1-32. AC POWER FAILURE.
1-33. The controller is equipped with a battery back-up system. When ac power is lost, the following actions will occur:

1. The filament restart delay timer is set as soon as ac power is lost. If ac power is removed long enough for the filament restart delay timer interval to expire, the filament timer will reset. When power returns, a new filament heating delay will be initiated before the plate supply is energized. If the ac power outage is momentary and the timer does not expire, high voltage will energize immediately upon restoration of ac power.
2. The overload feature will be inhibited.
3. The battery back-up system will maintain the controller memory. This system allows the transmitter to return to operation after the power failure in the exact same operating conditions.

1-34. POWER CONTROL OPERATION.
1-35. The controller is designed with two power control modes: 1) manual and 2) automatic. Manual/automatic power control operation is controlled by the APC ON switch/indicator. The controller is configured for manual power control when the APC ON switch/indicator is extinguished. The controller is configured for automatic power control when the APC ON switch/indicator is illuminated.

1-36. The controller manipulates the RF output power using the screen supply. The primary of the screen power transformer is controlled by variable autotransformer which is driven by dc servo motor B4. The controller manipulates the RF output power by routing raise/lower commands B4. A raise command rotates the motor in a manner which increases the screen voltage. As a result of the increase in screen voltage, the RF output power will increase. A lower command rotates the motor in a manner which decreases the screen voltage. Limit switches on the motor prevent possible damage to the autotransformer by disconnecting the drive signal at the end of travel for each direction.

1-37. MANUAL POWER CONTROL OPERATION.
1-38. Manual operation refers to operation of the transmitter with the APC feature off. In this mode, RF power output is not automatically controlled, but responds only to manual raise and lower commands. In the manual mode, the RAISE and LOWER switch/indicators directly control the dc servo motor which varies the screen voltage supply.

1-39. AUTOMATIC POWER CONTROL (APC) OPERATION.
1-40. When the controller is in the automatic mode, the RAISE and LOWER switch/indicators control a power control reference point. When the RAISE switch/indicator is depressed, the power control reference point is raised and the transmitter output power level will increase. When the LOWER switch/indicator is depressed, the power control reference point is lowered and the transmitter output power level will decrease.

1-41. The transmitter output power level will respond to the changes in the power control reference point. The controller manipulates the RF output power using the screen supply dc servo motor. Once the desired output level is established using the RAISE/LOWER switch/indicators, the controller will automatically maintain the established RF output power level.

1-42. The controller is equipped with circuitry which rectifies and calibrates the PA directional coupler forward and reflected power signals. These signals serve as control inputs. In addition to the forward and reflected power signals, PA screen current, and IPA forward power allow automatic control of the PA screen voltage using a dc servo motor. If excessive PA reflected power, excessive screen current, or low IPA power is measured, the "raise power" function will be inhibited to prevent an overload condition. The absence of plate voltage will inhibit the raise function and signal the controller to adjust the screen voltage to minimum. Excessive transmitter RF output or a high PA reflection will first inhibit the raise function. If the condition exceeds the limits, the circuit will initiate a sequence which lowers power proportionately in response to the condition.

1-43. VSWR FOLDBACK.
1-44. In the automatic power control mode, PA power will be automatically reduced if PA reflected power becomes excessive enough to overload the transmitter. As the condition which caused the high VSWR returns to normal, RF power will be proportionally raised until full output is restored. A similar circuit for PA forward power will reduce power if the output is excessive.

1-45. A dead-band window is used to prevent the controller from hunting. If reflected power is below the lower limit of the dead-band, the controller will perform no correction. If reflected power increases beyond the lower limit, the raise feature will be inhibited to prevent the forward power control function from raising power and avoid a transmitter overload. If the PA reflected power continues to rise and is within the dead-band, no lowering of power will occur. If the upper limit of the dead-band is reached, a lower command will be applied.

1-46. SOFT START.
1-47. Soft start operation is when APC is enabled, the controller monitors the plate voltage and reduces the screen voltage to zero upon the absence of plate voltage. When the plate supply is energized such as during power-on, the controller will perform the following:

1. Gradually increase the screen voltage until the APC power level reference is achieved unless limited by low IPA drive, excessive screen current, or a high VSWR condition. This prevents inadvertent cycling of the VSWR overload at turn-on if the load is not optimal such as during an ice storm.
2. When the plate voltage sample decreases below the fixed level, the following events will occur:
A. The raise function will be inhibited.
B. The controller will output a lower command to: 1) lower the screen voltage and 2) stop lowering the screen voltage at a minimum level. Once the minimum level is achieved, the lower command will remain.
C. When the HIGH VOLTAGE ON switch/indicator is depressed, the plate voltage sample from the plate meter multiplier circuit board will rise above the fixed reference. The raise inhibit will be removed along with the power lower signal and the APC mode will be allowed to re-establish the transmitter RF power.

1-48. OUTPUT POWER CONTROL.

1-49. The controller uses a dead-band to determine how the PA forward power control circuit will react when PA forward power increases or decreases beyond the established level. When power is within the dead-band, the controller will take no control action. If the PA forward power decreases by 2% or more from 100%, the controller will start corrective action by applying the raise power command. If PA forward power then increases by 2% or more from 100%, the raise function is to be inhibited. This is the upper edge of the deadband. If PA power should continue to increase to a point which is 2% above the desired power level reference, the controller will lower the power. As the PA power is lowered to the normal level, the controller will remove the power lower command. The power will remain at this point within the power level reference point deadband. If the power should drop below the lower limit, the unit will again apply the raise command. The circuit will now function normally to control power and maintain operation within the deadband. ERATION AT LESS THAN LICENSED POWER OPERATION.

1-50. PRESET POWER.
1-51. Preset power is normally used to automatically switch the transmitter to a predetermined power output level such as half-power for periods of auxiliary generator operation. The following events are to occur during preset power operation.

1. The APC functions as before, only the preset power reference is used to determine the APC power level reference. The transmitter power output will now be determined by the preset power level reference.
2. If ac power is momentarily removed from the controller, the preset power command will be automatically maintained.
3. When the APC ON and PRESET switch/indicators are illuminated, any adjustment of the RAISE and LOWER switch/indicators will adjust the preset power level reference.

1-52. CONTROLLER POWER SUPPLY MODULE.
$1-53$. The transmitter controller is equipped with a modular switching power supply assembly. The assembly is not manufactured by Broadcast Electronics. Therefore, no theory of operation can be provided.

SECTION II TRANSMITTER CONTROLLER MAINTENANCE

2-1. INTRODUCTION.
2-2. This section provides maintenance information for the FM-25T/FM-30T/FM-35T transmitter controller.

2-3. SAFETY CONSIDERATIONS.
2-4. The FM-25T/FM-30T/FM-35T transmitter contains high voltages and currents which, if regarded carelessly, could be fatal. The transmitter has many built-in safety features, however; good judgment, care, and common sense are the best accident preventives. The maintenance information contained in this section should be performed only by trained and experienced maintenance personnel.

2-5. MAINTENANCE.

出
 WARNING
 WARNING

NEVER OPEN THE EQUIPMENT UNLESS ALL TRANSMITTER PRIMARY POWER IS DISCONNECTED.

2-6. The maintenance philosophy consists of preventative maintenance such as cleaning applied to the equipment of forestall future failures and second level maintenance consisting of procedures required to restore the equipment to operation after a fault. The following text presents the controller adjustments.

2-7. MAIN CIRCUIT BOARD CONTROL ADJUSTMENTS.
2-8. OVERLOAD CONTROLS. The following text presents the overload adjustment procedures. If more than one control is adjusted, adjust the controls as follows: 1) VSWR, 2) PLATE, 3) SCREEN, and 4) GRID.

2-9. VSWR OVERLOAD THRESHOLD ADJUST. To adjust the VSWR overload threshold, proceed as follows.

2-10. Required Equipment. The following equipment is required to adjust the VSWR overload threshold.
A. 7 dB attenuator, BNC connections.
B. 5/16 inch nut-driver.

CAUTION
 CAUTION

THE OVERLOAD THRESHOLD LEVEL ADJUSTMENTS DETERMINE WHEN THE TRANSMITTER INITIATES ACTION. IF A CONTROL IS INCORRECTLY ADJUSTED THE CONTROLLER MAY NOT SENSE THE FAULT AND DAMAGE TO THE TRANSMITTER MAY RESULT.

2-11. Procedure. To adjust the control, proceed as follows.
2-12. Check and adjust reflected power meter calibration control R84 before proceeding (refer to REFLECTED POWER CALIBRATION in the following text).

2－13．Apply power to the transmitter．
2－14．Refer to Figure 2－1 and select VSWR OVERLOAD as follows：
1．Operate customer adjustment function switch SW1 to position 6.
2．Depress and hold customer adjustment up／down switch S2 in the up position to raise the threshold．

WARNING DISCONNECT ALL TRANSMITTER PRIMARY POWER BEFORE PROCEEDING．
WARNING

2－15．Disconnect the transmitter primary power．
2－16．Disconnect cable 305 from the reflected power directional coupler（ \leftarrow port）on the transmit－ ter low－pass filter．

2－17．Using the nut－driver，loosen the clamps securing the reflected power directional coupler to to the low－pass filter．
$2-18$ ．Rotate the reflected power directional coupler 180 degrees so the arrow on the coupler is pointing away from the transmitter (\rightarrow) ．Secure the clamps．

2－19．Connect the 7 dB attenuator to the reflected power directional coupler and connect cable 305 to the attenuator．

2－20．Apply power and operate the transmitter at the normal RF power output as indicated by the front panel OUTPUT POWER meter．

2－21．Depress the VSWR switch／indicator to illuminate the switch／indicator．
2－22．Refer to Figure 2－1 and use up／down switch S2 to lower the VSWR overload threshold un－ til the VSWR OVERLOAD indicator and the OVERLOAD RESET switch／indicator illu－ minate and the transmitter cycles off．
2－23．Depress the HIGH VOLTAGE OFF switch then depress the LOWER switch／indicator for approximately 4 seconds to lower the transmitter power．

2－24．Depress the OVERLOAD RESET and the HIGH VOLTAGE ON switch／indicators．
$2-25$ ．Depress the RAISE switch／indicator to raise power．The transmitter will cycle off at a VSWR indication of $2.8: 1$ ．If not，repeat the adjustment．

DISCONNECT ALL TRANSMITTER PRIMARY POWER BEFORE PROCEEDING．

2－26．Disconnect all transmitter primary power．
2－27．Remove the test equipment and replace the reflected power directional coupler．Ensure the reflected power directional coupler arrow is pointing towards the transmitter (\leftarrow) ．Ensure cable 305 is re－connected to the reflected power directional coupler port．
$2-28$ ．PLATE OVERLOAD ADJUSTMENT．The plate overload control can be adjusted from 0.1 A to 0.75 A above a normal plate current level．The factory default is 0.5 A ．To adjust the PLATE overload threshold，proceed as follows．

2-29. Procedure. To adjust the threshold level of the plate overload circuit, proceed as follows:
2-30. Apply power and operate the transmitter within specifications at the rated RF output into a proper 50 Ohm load. Record the OUTPUT LOADING control cyclometer indication
\qquad _.

2-31. Refer to Figure 2-1 and select PLATE OVERLOAD as follows:

1. Operate customer adjustment function switch SW1 to position 5.
2. Depress and hold customer adjustment up/down switch S 2 in the up position to raise the threshold.

2-32. Operate the APC ON switch/indicator to extinguish the switch/indicator.
2-33. Operate the OUTPUT LOADING control clockwise and the RAISE switch/indicator to detune the transmitter until plate current is increased by 0.5 Amperes as indicated on the PLATE CURRENT meter.

2-34. Refer to Figure 2-1 and use up/down switch S2 to lower the plate overload threshold until the PLATE OVERLOAD indicator and the OVERLOAD RESET switch/indicator illuminate and the transmitter cycles off.

2-35. Depress the HIGH VOLTAGE OFF switch then depress and hold the LOWER switch/indicator for approximately four seconds.
2-36. Depress the OVERLOAD RESET and the HIGH VOLTAGE ON switch/indicators.
2-37. Observe the PLATE CURRENT meter and operate the RAISE switch/indicator until the transmitter deenergizes. Correct adjustment is obtained when the transmitter deenergizes and plate current is 0.5 amperes above normal. Repeat the procedure if required.

2-38. Depress the HIGH VOLTAGE OFF switch and OVERLOAD RESET switch/indicator.
2-39. Restore the OUTPUT LOADING control to the cyclometer indication recorded in the preceding text and operate the APC ON switch/indicator to illuminate the switch/indicator.

2-40. SCREEN OVERLOAD ADJUSTMENT. The screen overload control can be adjusted from 400 mA to 500 mA . The factory default is 450 mA . To adjust the SCREEN overload threshold, proceed as follows.
2-41. Required Equipment. The following equipment is required to adjust the screen overload threshold.
A. Insulated adjustment tool, flat-tip (BE P/N 407-0083).

CAUTION
 CAUTION

THE OVERLOAD THRESHOLD LEVEL ADJUSTMENTS DETERMINE WHEN THE TRANSMITTER INITIATES ACTION. IF A CONTROL IS INCORRECTLY ADJUSTED THE CONTROLLER MAY NOT SENSE THE FAULT AND DAMAGE TO THE TRANSMITTER MAY RESULT.

2-42. Procedure. To adjust the threshold level of the screen overload circuit, proceed as follows:

2-43. Apply power and operate the transmitter within specifications at the rated RF output into a proper 50 Ohm load. Record the OUTPUT LOADING control cyclometer indication
\qquad _.

2-44. Refer to Figure 2-1 and select SCREEN OVERLOAD as follows:

1. Operate customer adjustment function switch SW1 to position 4.
2. Depress and hold customer adjustment up/down switch S 2 in the up position to raise the threshold.

2-45. Operate the APC ON switch/indicator to extinguish the switch/indicator.
2-46. Operate the MULTIMETER to the SCREEN CURRENT position.
2-47. Operate the OUTPUT LOADING control counterclockwise and the RAISE switch/indicator to detune the transmitter for a screen current of 450 milliamperes as indicated on the MULTIMETER. If 450 milliamperes can not be obtained, increase the IPA power as follows:

1. Operate the MULTIMETER switch to IPA FWD POWER and record the forward power indication \qquad .
2. Adjust the front-panel IPA POWER ADJUST control until the MULTIMETER indicates approximately 500 watts.

2-48. Refer to Figure 2-1 and use up/down switch S2 to lower the screen overload threshold until the SCREEN OVERLOAD indicator and the OVERLOAD RESET switch/indicator illuminate and the transmitter cycles off.

2-49. Depress the HIGH VOLTAGE OFF switch/indicator then depress and hold the LOWER switch/indicator for approximately four seconds.

2-50. Depress the OVERLOAD RESET and the HIGH VOLTAGE ON switch/indicators.
2-51. Observe the MULTIMETER and operate the RAISE switch/indicator until the transmitter deenergizes. Correct adjustment is obtained when the transmitter deenergizes and the MULTIMETER indicates 450 milliamperes. Repeat the procedure if required.

2-52. Depress the HIGH VOLTAGE OFF and OVERLOAD RESET switch/indicators.
2-53. Restore the OUTPUT LOADING control to the cyclometer indication recorded in the preceding text, re-adjust the IPA if required, and operate the APC ON switch/indicator to illuminate the switch/indicator.

2-54. GRID OVERLOAD ADJUSTMENT. Position 7 on customer adjustment function switch SW1 adjusts the grid overload threshold. The control is adjusted at the factory and will not require re-adjustment. The control is designed in a manner which does not permit mis-adjustment in the field.

2-55. FILAMENT WARM-UP ADJUSTMENT. The warm-up adjustment controls the filament heating delay prior to high voltage on. The warm-up time can be adjusted from 10 seconds to 4.5 minutes. A minimum interval is preset so that incorrect adjustment cannot damage the PA tube. To adjust the warm-up time, proceed as follows.
2-56. Required Equipment. The following equipment is required to adjust warm-up time.
A. Wristwatch with seconds hand or stopwatch function.

2-57. Procedure. To adjust the warm-up time, proceed as follows.
2-58. Depress the FILAMENT OFF switch/indicator to illuminate the switch/indicator.

2-59. Wait approximately 15 seconds. Note the time and depress the HIGH VOLTAGE ON switch/indicator.
2-60. Again note the time when the plate contactor energizes.
2-61. Refer to Figure 2-1 and select the warm-up feature by operating customer adjustment function switch SW1 to position 0 .
2-62. Refer to Figure 2-1 and use up/down switch S2 to increase or decrease the time delay. Check the adjustment by repeating the procedure. The control is factory set for 10 seconds.

2-63. COOL-DOWN ADJUSTMENT. The cool-down adjustment controls the blower rundown interval after the filament voltage is off. The cool-down time can be adjusted from 30 seconds to 4.5 minutes. A minimum interval is preset so that incorrect adjustment cannot damage the PA tube. To adjust the cool down time, proceed as follows.
2-64. Required Equipment. The following equipment is required to adjust cool down time.
A. Wristwatch with seconds hand or stopwatch function.

2-65. Procedure. To adjust the cool-down time, proceed as follows.
2-66. Apply power and operate the transmitter.
2-67. Simultaneously depress the FILAMENT OFF switch and note the time.
2-68. Again note the time when the blower halts operation.
2-69. Refer to Figure 2-1 and select the cool-down feature by operating customer adjustment function switch SW1 to position 3.
2-70. Refer to Figure 2-1 and use up/down switch S2 to increase or decrease the blower rundown interval. Check the adjustment by repeating the procedure. The control is factory set for 30 seconds. Each click of S 2 is equal to 1 second.
2-71. RECYCLE ADJUSTMENT. The recycle adjustment controls the amount of time the transmitter will remain deenergized to allow an overload to dissipate. The recycle time can be adjusted from 100 milliseconds to 15 seconds. The factory default is 2 seconds. To adjust the recycle time, proceed as follows.
2-72. Required Equipment. The following equipment is required to adjust the recycle time.
A. Insulated adjustment tool, flat-tip (BE P/N 407-0083).

2-73. Procedure. To adjust the recycle time, proceed as follows.
2-74. Apply power and operate the transmitter.
2-75. Simulate a screen or plate overload using the OUTPUT LOADING control and note the time when the transmitter attempts to return to operation.
2-76. Refer to Figure 2-1 and select the recycle feature by operating customer adjustment function switch SW1 to position 2.
2-77. Refer to Figure 2-1 and use up/down switch S2 to increase or decrease the recycle time. Check the adjustment by repeating the procedure. The control is factory set for 2 seconds. Each click of S 2 is equal to 1 second.
2-78. WARM-UP DEFEAT ADJUSTMENT. The warm-up defeat adjustment controls the length of the interval the filaments can be off before initiating a new filament warm-up cycle. The warm-up defeat time can be adjusted from 1 second to 15 seconds. A 3 second delay is preset so that momentary power fluctuations will not initiate a new filament warm-up cycle. To adjust the warm-up defeat time, proceed as follows.

2-79. Required Equipment. The following equipment is required to adjust the warm-up defeat time.
A. Wristwatch with seconds hand or stopwatch function.

2-80. Procedure. To adjust the warm-up defeat time, proceed as follows.
2-81. Apply power and operate the transmitter.
2-82. Check the current warm-up defeat time as follows:

1. Depress the FILAMENT OFF switch/indicator to illuminate the switch/indicator.
2. Wait approximately 3 seconds and depress the HIGH VOLTAGE ON switch/indicator to illuminate the switch/indicator. With the warm-up defeat time configured at 3 seconds, the filaments will automatically re-energize.

2-83. Refer to Figure 2-1 and select the warm-up defeat feature by operating customer adjustment function switch SW1 to position 1.

2-84. Refer to Figure 2-1 and use up/down switch S2 to increase or decrease the warm-up time. Check the adjustment by repeating the procedure. The control is factory set for 3 seconds. Each click of S2 is equal to 1 second.

2-85. FORWARD POWER CALIBRATION. Potentiometer R83 calibrates the forward power sample circuit. Adjustment is required only if repairs have been made to the directional coupler forward port, controller main circuit board, or low-pass filter. To adjust the control, proceed as follows.

2-86. Required Equipment. The following equipment is required to adjust the forward power calibration control.
A. 1/16 inch jewelers screw-driver, flat-tip.
B. Digital multimeter (Fluke 77 or equivalent).
C. Test load and connecting line (50 Ohm non-inductive, $31 / 8$ inch line input, 25 kW minimum for FM-25T models or 30 kW minimum for FM-30T models or 35 kW minimum for FM-35T models).
D. Calibrated in-line wattmeter with $31 / 8$ inch sampling section and cables (Bird 4720 Thruline with 25 kW element or equivalent for $\mathrm{FM}-25 \mathrm{~T}$ models or 30 kW element or equivalent for FM-30T models or 35 kW element or equivalent for FM-35T models).

2-87. Procedure. To adjust the control, proceed as follows.

$4 \begin{array}{ll}\text { WARNING } \\ \text { WARNING }\end{array}$

DISCONNECT ALL TRANSMITTER PRIMARY POWER BEFORE PROCEEDING.

2-88. Disconnect the transmitter primary power.
2-89. Connect the test load and wattmeter to the transmitter output.
2-90. Connect the multimeter between TP-5 (signal) and TP-1 (ground) or to the chassis.
2-91. Apply power and operate the transmitter in the local manual mode (REMOTE DISABLE illuminated, APC ON extinguished) at the desired 100% RF power output as indicated by the in-line wattmeter.

2-92. Depress the FWD switch/indicator to illuminate the switch/indicator.
2-93. Refer to Figure 2-1 and adjust forward power calibrate control R83 until the multimeter indicates +4.25 volts dc.

2-94. Refer to OUTPUT POWER METER CALIBRATION in the following text and perform the procedure to calibrate the output power meter.

2-95. Remove the test equipment and return the transmitter to service.
2-96. OUTPUT POWER METER CALIBRATION. This adjustment will be required only if the OUTPUT POWER meter or potentiometer R113 is replaced. To adjust output meter calibrate control R113, proceed as follows.
2-97. Required Equipment. The following equipment is required to adjust the output meter calibrate control.
A. 1/16 inch jewelers screw-driver, flat-tip.
B. Test load and connecting line (50 Ohm non-inductive, $31 / 8$ inch line input, 25 kW minimum for FM-25T models or 30 kW minimum for FM-30T models or 35 kW minimum for FM-35T models).
C. Calibrated in-line wattmeter with $31 / 8$ inch sampling section and cables (Bird 4720 Thruline with 25 kW element or equivalent for $\mathrm{FM}-25 \mathrm{~T}$ models or 30 kW element or equivalent for FM-30T models or 35 kW element or equivalent for FM-35T models).

2-98. Procedure. To adjust the control, proceed as follows:
2-99. Check and adjust forward power calibration control R83 before proceeding (refer to FORWARD POWER CALIBRATION in the preceding text).

4 WARNING

DISCONNECT ALL TRANSMITTER PRIMARY POWER BEFORE PROCEEDING.

2-100. Disconnect the transmitter primary power.
2-101. Connect the test load and wattmeter to the transmitter output.
2-102. Apply power and operate the transmitter in the local manual mode (REMOTE DISABLE illuminated, APC ON extinguished) at the desired 100% RF power output as indicated by the in-line wattmeter.

2-103. Refer to Figure 2-1 and adjust meter calibration control R113 to obtain a 100% OUTPUT POWER meter indication.

4 WARNING

ASSURE ALL PRIMARY POWER IS DISCONNECTED BEFORE PROCEEDING.

2-104. Disconnect primary power.
2-105. Remove the test equipment and reconnect the transmitter output to the antenna load.
2-106. REFLECTED POWER CALIBRATION. Potentiometer R84 calibrates the reflected power sample circuit. Adjustment is required only if repairs have been made to the directional coupler reflected port, controller main circuit board, or low-pass filter. To adjust the control, proceed as follows.

2-107. Required Equipment. The following equipment is required to adjust the reflected power calibration control.
A. 1/16 inch jewelers screw-driver, flat-tip.
B. 10 dB attenuator, BNC connections.
C. 5/16 inch nut-driver.

2-108. Procedure. To adjust the control, proceed as follows.
2-109. Check and adjust output power meter calibration control R113 before proceeding (refer to OUTPUT POWER METER CALIBRATION in the preceding text).

2-110. Adjust the VSWR null control as follows:

虫
 WARNING
 WARNING

DISCONNECT ALL TRANSMITTER PRIMARY POWER BEFORE PROCEEDING.

1. Disconnect the transmitter primary power.
2. Ensure the test load and wattmeter are connected to the transmitter output.
3. Refer to Figure 2-1 and connect the multimeter between TP-6 (signal) and TP-1 (ground) or to the chassis.
4. Apply power and operate the transmitter in the local manual mode (REMOTE DISABLE illuminated, APC ON extinguished) at the desired 100% RF power output as indicated by the in-line wattmeter.
5. Refer to Figure 2-1 and adjust VSWR null control R119 for a 0.0 volt dc indication on the multimeter.

$44 \begin{aligned} & \text { WARNING } \\ & \text { WARNING }\end{aligned}$

DISCONNECT ALL TRANSMITTER PRIMARY POWER BEFORE PROCEEDING.

2-111. Disconnect the transmitter primary power.
2 -112. Disconnect cable 305 from the reflected power directional coupler (\leftarrow port) on the transmitter low-pass filter.

2-113. Using the nut-driver, loosen the clamps securing the reflected power directional coupler to to the low-pass filter.

2-114. Rotate the reflected power directional coupler 180 degrees so the arrow on the coupler is pointing away from the transmitter (\rightarrow). Secure the clamps.

2-115. Connect the 10 dB attenuator to the reflected power directional coupler and connect cable 305 to the attenuator.

2-116. Apply power and operate the transmitter at the normal RF power output as indicated by the front panel OUTPUT POWER meter.

2-117. Depress the VSWR switch/indicator to illuminate the switch/indicator.
2-118. Refer to Figure 2-1 and adjust reflected power calibrate control R84 until the OUTPUT POWER meter indicates a VSWR condition of $1.9: 1$.

42
 WARNING
 WARNING

DISCONNECT ALL TRANSMITTER PRIMARY POWER BEFORE PROCEEDING.

2-119. Disconnect the transmitter primary power.
$2-120$. Remove the test equipment and replace the reflected power directional coupler. Ensure the reflected power directional coupler arrow is pointing towards the transmitter (\leftarrow). Ensure cable 305 is re-connected to the reflected power directional coupler port.

2-121. AM NOISE TEST RECEPTACLE CALIBRATION. Potentiometer R27 calibrates the signal at the AM noise test receptacle. Adjustment is required only if repairs have been made to the AM noise circuitry. To adjust the control, proceed as follows.
$2-122$. Required Equipment. The following equipment is required to adjust the AM noise calibration control.
A. 1/16 inch jewelers screw-driver, flat-tip.
B. Digital multimeter (Fluke 77 or equivalent).
$2-123$. Procedure. To adjust the control, proceed as follows.
2-124. Check and adjust output power meter calibration control R113 before proceeding (refer to OUTPUT POWER METER CALIBRATION in the preceding text).
$2-125$. Disconnect the transmitter primary power.
2-126. Connect the multimeter between the center conductor of the AM noise test receptacle and chassis ground.
2-127. Apply power and operate the transmitter in the local manual mode (REMOTE DISABLE illuminated, APC ON extinguished) at the desired 100% RF power output as indicated by the front panel OUTPUT POWER meter.
2-128. Refer to Figure 2-1 and adjust AM noise calibration control R27 for a 1.09 volt dc indication on the multimeter.

2-129. Disconnect the transmitter primary power.
2-130. Remove the test equipment and return the transmitter to service.
2-131. IPA FORWARD POWER CALIBRATION. Potentiometer R95 calibrates the IPA forward power sample circuit.

2-132. Required Equipment. The following equipment is required to adjust the IPA forward power calibration control.
A. Insulated adjustment tool, flat-tip (BE P/N 407-0083).
B. Digital multimeter (Fluke 77 or equivalent).
C. 1/16 inch jewelers screw-driver, flat-tip.

2-133. Procedure. To adjust the control, proceed as follows.

2-134. Disconnect the transmitter primary power.
2-135. Connect the multimeter between TP-7 (signal) and TP-1 (ground).
2-136. Apply power and operate the transmitter in the local automatic mode (REMOTE DISABLE illuminated, APC ON illuminated) at the desired $100 \% \mathrm{RF}$ power output as indicated by the in-line wattmeter.

2-137. Operate the MULTIMETER switch to IPA FWD POWER. Ensure the IPA forward power output is 400 watts. If the IPA forward power must be changed, adjust the IPA POWER ADJUST potentiometer to obtain a 400 watt indication on the mulitmeter.

2-138. Refer to Figure 2-1 and adjust IPA forward power calibrate control R95 until the multimeter indicates +4.4 volts dc.
$2-139$. Remove the test equipment, re-adjust the IPA forward power if required, and return the transmitter to service.

2-140. CONTROLLER RESET. The controller is equipped with reset switch SW3. However, the microcontroller is equipped with a circuit to automatically reset the processor in the event of a lock-up condition. As a result, the switch will typically not be used.

2-141. CUSTOMER ADJUSTMENTS - RESET. The customer adjustments and the 100% power programming can be reset to the factory defaults if required. The reset operation is required only if the customer adjustments have been mis-adjusted. To reset the controller programming to the factory defaults, proceed as follows:

1. Depress the HIGH VOLTAGE OFF switch/indicator.
2. Refer to Figure 2-1 and remove the model programming jumpers from model programming header J8.
3. Refer to Figure $2-1$ and re-install the model programming jumpers. Ensure the jumpers are correctly programmed for the transmitter model.
4. Depress the HIGH VOLTAGE ON switch/indicator and return the transmitter to service.

2-142. TROUBLESHOOTING.

Abstract

NEVER OPEN THE EQUIPMENT UNLESS ALL TRANSMITTER PRIMARY POWER IS DISCONNECTED. USE THE GROUNDING STICK PROVIDED TO ENSURE ALL COMPONENTS AND ALL SURROUNDING COMPONENTS ARE DISCHARGED BEFORE ATTEMPTING ANY MAINTENANCE ON ANY AREA WITHIN THE TRANSMITTER.

2-143. Most troubleshooting consists of visual checks. Because of the high voltages and currents in the equipment, it is considered hazardous to work with power energized. Therefore, the various transmitter indicators (meters, LEDs, and fuses) should be used to isolate the malfunction to one specific area.

2-144. Troubleshooting within the controller circuit board enclosure is not considered hazardous due to the low potentials and currents involved. Once the trouble is isolated and power is totally deenergized, it is suggested that the exact problem be located with resistance checks using the schematic diagrams and theory of operation presented throughout the text.
$2-145$. If a circuit is diagnosed as faulty, the circuit fault may be isolated and repaired locally or the entire device may be returned to Broadcast Electronics, Inc. for exchange, alignment, or replacement.

2-146. CONTROLLER COMPONENT LOCATIONS. Figure 2-2 presents the controller component locations. Refer to Figure 2-2 as required during the troubleshooting procedures to locate components within the controller.

CAUTION CAUTION

TO PREVENT DAMAGE TO THE MAIN CIRCUIT BOARD, DO NOT REMOVE POWER SUPPLY CONNECTOR P5 WITH POWER ENERGIZED.

2-147. MAIN CIRCUIT BOARD POWER SUPPLY CONNECTOR P5. The controller main circuit board is equipped with power supply connector P5. The main circuit board may be destroyed if the connector is removed with power energized. Therefore, disconnect the transmitter ac power before removing the connector.

2-148. MICROPROCESSOR MODULE. The transmitter controller is equipped with a microprocessor module. Figure 2-2 presents the location of the module. The module is designed to plug directly into header J1 on the main circuit board. In the event of a microprocessor failure, the module can be replaced by performing the following procedure.

CAUTION CAUTION

DO NOT REMOVE THE MICROPROCESSOR MODULE WITH THE TRANSMITTER PRIMARY AC POWER ENERGIZED.

$2-149$. Disconnect the transmitter primary power.
$2-150$. Open the controller door and locate the microprocessor module.
2-151. Using a Phillips screwdriver, remove the microprocessor mounting screw.
$2-152$. Using your hands, gently pull the module from the header.
2-153. Orient the new microprocessor module as shown and insert the module in header J1.
2-154. Re-install the mounting screw, close the controller door, and return the transmitter to service.

2-155. POWER SUPPLY INDICATORS. The controller main circuit board is equipped with three LEDs. The LEDs present the status of the power supply $+15 \mathrm{~V},-15 \mathrm{~V}$, and +5 V power supplies. Use the indicators to check the status of the power supply module.
2-156. CONTROLLER POWER SUPPLY MODULE. The transmitter controller is equipped with a modular switching power supply assembly. The power supply module is equipped with an ac line fuse and is not manufactured by Broadcast Electronics.
$2-157$. If the power supply is suspected as being faulty, check the power supply fuse. If the power supply fuse has not blown, contact the Broadcast Electronics Customer Service Department. If desired, refer to APPENDIX A and the Computer Products power supply schematic diagram for additional power supply troubleshooting information.

BLANK PAGE

SECTION III PARTS LIST

3-1. INTRODUCTION.

3-2. This section provides descriptions and part numbers of electrical components, assemblies, and selected mechanical parts required for maintenance of the Broadcast Electronics FM-25T/FM-30T/FM-35T transmitter controller. Each table entry in this section is indexed by reference designators appearing on the applicable schematic diagram.

TABLE 3-1. TRANSMITTER CONTROLLER PARTS LIST INDEX

TABLE	DESCRIPTION	PART NO.	PAGE
$3-2$	FM TRANSMITTER DIGITAL CONTROLLER ASSEMBLY	$959-0430$	$3-2$
$3-3$	MAIN BOARD CONTROLLER CIRCUIT BOARD ASSEMBLY	$919-0436$	$3-2$
$3-4$	FRONT PANEL CONTROLLER CIRCUIT BOARD	$919-0437$	$3-5$
$3-5$	ASSEMBLY		
$3-6$	I/O BOARD CONTROLLER CIRCUIT BOARD ASSEMBLY	$919-0438$	$3-6$
	HARNESS, FM DIGITAL CONTROLLER ASSEMBLY	$949-0423$	$3-7$

TABLE 3-2. FM TRANSMITTER DIGITAL CONTROLLER ASSEMBLY - 959-0430

REF. DES.	DESCRIPTION	PART NO.	QTY.
XU3	Software, FM Control, Programmed Kit	979-0443-003	1
Z1	Smartcore Z1B Circuit Board Assembly	544-0006	1
----	Power Input Connector/RFI Filter, 3 Amperes, 250V ac, $50 / 60 \mathrm{~Hz}$	339-0008	1
----	Fuse, 313001, 3AG, 1 Amp, Slow-Blow, 250V	334-0100	1
----	Fuse Holder, AGC	415-2012	1
----	Connector, BNC	417-0016	1
----	Receptacle, BNC	417-0017	2
----	Power Supply, NFN40-7610, SMPS, 3 Output 40W	540-0006	1
----	Main Board, Controller Circuit Board Assembly	919-0436	1
----	Front Panel, Controller Circuit Board Assembly	919-0437	1
----	I/O Board, Controller Circuit Board Assembly	919-0438	1
---	Harness, FM Digital Controller Assembly	949-0423	1

TABLE 3-3. MAIN BOARD CONTROLLER CIRCUIT BOARD ASSEMBLY - 919-0436 (Sheet 1 of 4)

REF. DES.	DESCRIPTION	PART NO.	QTY.
BT1	Battery, 3 Volts, 190 mAh , Lithium	350-2032	1
C1, C2	Capacitor, Ceramic, $0.1 \mathrm{uF} \pm 10 \%$, 50 V , SMD	007-1044	2
C3	Capacitor, Tantalum, $15 \mathrm{uF} \pm 10 \%, 35 \mathrm{~V}$	070-1564	1
C4 thru C8	Capacitor, Ceramic, $0.1 \mathrm{uF} \pm 10 \%$, 50 V , SMD	007-1044	5
C9	Capacitor, Tantalum, $15 \mathrm{uF} \pm 10 \%, 35 \mathrm{~V}$	070-1564	1
C10, C11	Capacitor, Ceramic, $0.1 \mathrm{uF} \pm 10 \%$, 50 V , SMD	007-1044	2
C12 thru C15	Capacitor, Ceramic, $390 \mathrm{pF} \pm 5 \%$, 100V, SMD	007-3923	4
C16 thru C30	Capacitor, Ceramic, $1 \mathrm{uF} \pm 10 \%, 50 \mathrm{~V}$, SMD	007-1054	15
C31, C32	Capacitor, Ceramic, $0.1 \mathrm{uF} \pm 10 \%$, 50 V , SMD	007-1044	2
C33	Capacitor, Ceramic, $1 \mathrm{uF} \pm 10 \%$, 50 V , SMD	007-1054	1
C34	Capacitor, Electrolytic, 330 uF $\pm 20 \%$, 25V, SMD	007-0331	1
C35, C36	Capacitor, Ceramic, $0.1 \mathrm{uF} \pm 10 \%$, 50 V , SMD	007-1044	2
C37 thru C52	Capacitor, Ceramic, $390 \mathrm{pF} \pm 5 \%, 100 \mathrm{~V}$, SMD	007-3923	16
C53	Capacitor, Ceramic, $0.1 \mathrm{uF} \pm 10 \%$, 50 V , SMD	007-1044	1
D1	Transzorb, P6SMB27CAT3, Case 403A-03, 27V, SMD	204-0027	1
D2	Transzorb, P6SMB15CAT3, Case 403A-03, 15V, SMD	204-0015	1
DS1 thru DS3	LED, HSMF-C655, Dual Red/Green, Low Profile, SMD	325-0250	3
J1	Receptacle, 40-Position, Two Row, PCB	417-4042	1
J2	Header, 40-Pin, .100 Centers, SMD	408-0040	1
J3, J4	Header, 50-Pin, .100 Centers, SMD	408-0050	2
J5	Receptacle, 6-Pin	417-0677	1
J6	Header, 3-Pin, . 100 Centers, SIP	408-0300	1
J7	Header, 10-Pin, .100 Centers, DIP	408-1000	1
J8	Header, 16-Pin, 100 Centers, DIP	408-1600	1
J9 thru J14	Header, 3-Pin, . 100 Centers	408-0300	6
OSC1	Oscillator, Crystal, 1.8432 Mhz, SMD	390-0054	1
P6, P8A thru P8H, P9 thru P14	Switch, Jumper Programmable	340-0004	15
Q1, Q2	Transistor, MMBT3904LT1, NPN, SMD	216-3904	2
R1, R2	Resistor, Chip, 1.00 k Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}, \mathrm{SMD}$	102-1001	2
R3 thru R19	Resistor, Chip, 471 Ohm $\pm 1 \%$, 1/10W, SMD	102-4711	17
R20 thru R25	Resistor, Chip, 10.0 k Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}, \mathrm{SMD}$	102-1002	6
R27	Potentiometer, 100 k , Top Adjust, SMD	198-0104	1
R31 thru R45	Resistor, Chip, 10.0 k Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}, \mathrm{SMD}$	102-1002	15
R46	Resistor, Chip 1.00 k Ohm $\pm 1 \%$, 1/10W, SMD	102-1001	1

TABLE 3-3. MAIN BOARD CONTROLLER CIRCUIT BOARD ASSEMBLY - 919-0436 (Sheet 2 of 4)

REF. DES.	DESCRIPTION	PART NO.	QTY.
R47 thru R59	Resistor, Chip, 1.00 k Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}, \mathrm{SMD}$	102-1001	13
R60	Resistor, Chip, 10.0 k Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}, \mathrm{SMD}$	102-1002	1
R61	Resistor, Chip $1.00 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/10W, SMD	102-1001	1
R62	Resistor, Chip, 10.0 k Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}, \mathrm{SMD}$	102-1002	1
R63	Resistor, Chip, 1.00 k Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}, \mathrm{SMD}$	102-1001	1
R64	Resistor, Chip, 471 Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}, \mathrm{SMD}$	102-4711	1
R65 thru R73	Resistor, Chip, 471 Ohm $\pm 1 \%$, 1/10W, SMD	102-4711	9
R74	Resistor, Chip, 471 Ohm $\pm 1 \%$, 1/10W, SMD	102-4711	1
R75	Resistor, Chip, 10.0 k Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}, \mathrm{SMD}$	102-1002	1
R76	Resistor, Chip, 41.2 k Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}, \mathrm{SMD}$	102-4122	1
R77, R78	Resistor, Chip, 10.0 k Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}, \mathrm{SMD}$	102-1002	2
R79	Resistor, Chip, 100 k Ohm $\pm 1 \%$, 1/10W	102-1003	1
R80	Resistor, Chip, 20.0 k Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}, \mathrm{SMD}$	102-2002	1
R81, R82	Resistor, Chip, 10.0 k Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}, \mathrm{SMD}$	102-1002	2
R83, R84	Potentiometer, 100 k , Top Adjust, SMD	198-0104	1
R85	Resistor, Chip, 10.0 k Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}, \mathrm{SMD}$	102-1002	1
R86	Resistor, Chip, 100 k Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}$	102-1003	1
R87	Resistor, Chip, 2.00 k Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}, \mathrm{SMD}$	102-2001	1
R88, R89	Resistor, Chip, 10.0 k Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}, \mathrm{SMD}$	102-1002	2
R91	Resistor, Chip, 2.00 k Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}, \mathrm{SMD}$	102-2001	1
R92	Resistor, Chip, 10.0 k Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}, \mathrm{SMD}$	102-1002	1
R95	Potentiometer, 100 k , Top Adjust, SMD	198-0104	1
R96	Resistor, Chip, 10.0 k Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}, \mathrm{SMD}$	102-1002	1
R99	Resistor, Chip, 768 Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}$, SMD	102-7680	1
R100	Resistor, Chip, 1.00 k Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}, \mathrm{SMD}$	102-1001	1
R101	Resistor, Chip, 332 k Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}, \mathrm{SMD}$	102-3323	1
R103	Resistor, Chip, 332 k Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}, \mathrm{SMD}$	102-3323	1
R106	Resistor, Chip, 20.0 k Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}, \mathrm{SMD}$	102-2002	1
R107	Resistor, Chip, 10.0 k Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}, \mathrm{SMD}$	102-1002	1
R109	Resistor, Chip, 10.0 k Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}, \mathrm{SMD}$	102-1002	1
R110	Resistor, Chip, 10.0 k Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}, \mathrm{SMD}$	102-1002	1
R112	Resistor, Chip, 33 k Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}, \mathrm{SMD}$	102-3353	1
R113	Potentiometer, 100 k , Top Adjust, SMD	198-0104	1
R114	Resistor, Chip, 2.00 k Ohm, 1/10W, SMD	102-2001	1
R115, R116	Resistor, Chip, 10.0 k Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}, \mathrm{SMD}$	102-1002	2
R118	Resistor, Chip, 100 k Ohm $\pm 1 \%$, 1/10W	102-1003	1
R119	Potentiometer, 50 k Ohm, Top Adjust, SMD	198-0503	1
R120	Resistor, Chip, 100 k Ohm $\pm 1 \%$, 1/10W	102-1003	1
$\begin{aligned} & \text { R125 thru } \\ & \text { R131 } \end{aligned}$	Resistor, Chip, 10.0 k Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}, \mathrm{SMD}$	102-1002	7
$\begin{aligned} & \text { R133 thru } \\ & \text { R140 } \end{aligned}$	Resistor, Chip, 10.0 k Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}, \mathrm{SMD}$	102-1002	8
R141 thru R143	Resistor, Chip, 49.9 Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}$	102-4991	3
R144	Resistor, Chip, 10.0 k Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}, \mathrm{SMD}$	102-1002	1
R145	Resistor, Chip, 20.0 k Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}, \mathrm{SMD}$	102-2002	1
R148	Resistor, Chip, 49.9 Ohm $\pm 1 \%$, 1/10W	102-4991	1
R149	Resistor, Chip, 10.0 k Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}, \mathrm{SMD}$	102-1002	1
$\begin{aligned} & \text { R151 thru } \\ & \text { R156 } \end{aligned}$	Resistor, Chip, 49.9 Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}$	102-4991	6
R159	Resistor, Chip, 49.9 Ohm $\pm 1 \%$, 1/10W	102-4991	1
R162	Resistor, Chip, 49.9 Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}$	102-4991	1

TABLE 3-3. MAIN BOARD CONTROLLER CIRCUIT BOARD ASSEMBLY - 919-0436
(Sheet 3 of 4)

REF. DES.	DESCRIPTION	PART NO.	QTY.
R165	Resistor, Chip, 49.9 Ohm $\pm 1 \%$, 1/10W	102-4991	1
R168	Resistor, Chip, 49.9 Ohm $\pm 1 \%, 1 / 10 \mathrm{~W}$	102-4991	1
SW1	Switch, 94HCB08W, Rotary, BCD, 8 Position, SMD	342-9410	1
SW2	Switch, ETO5SD1CBE, Toggle, SPDT, MOM/OFF/MOM	340-0510	1
SW3	Switch, TL3304F160, TACT, SPST, N.O., SMD, Recessed	342-3304	1
TP1 thru TP10	Chip, Test Point, 1206, SMD	413-1206	10
U1, U2, U4	Integrated Circuit, 82C55A, Peripheral Interface, 44-Pin PLCC Package	229-8255-001	3
U7, U8	Integrated Circuit, ADC0808CCV, A/D Converter, 8-BIT, 8-Channel Multiplexer, 28-Pin Molded Chip Carrier Package	224-0808	2
U18	Integrated Circuit, ST16C552CJ68, PLCC Package, 68-Pin, Dual Universal Asynchronous Receiver/Transmitter with FIFO and Parallel Printer Port With Power Down Capability, SMD	224-0552	1
U29, U31	Integrated Circuit, LT1491CS, OP Amp, Quad Micropower Rail-To-Rail Input and Output, 14-Pin, SO Package, SMD	224-1491	2
U32 thru U34	Integrated Circuit, SP241ACT, RS-232 Multi-Transceiver, +5 V , 28-Pin SOIC Package, SMD	224-2410	3
U35	Integrated Circuit, X9312WS, Nonvolatile Trimmer Pot, 10 k , $0-15 \mathrm{~V}$ dc, 8 -Pin SOIC Package, SMD	198-9312	1
U36	Integrated Circuit, Si9986CY, 1 Amp, Buffered Full-Bridge, 8-Pin SOIC Package, SMD	224-9986	1
U37	Integrated Circuit, LT1491CS, OP Amp, Quad Micropower Rail-To-Rail Input and Output, 14-Pin SO Package, SMD	224-1491	1
U38	Integrated Circuit, MAX505ACWG, QUAD, 8-BIT DAC, Volt Out, $+5 \mathrm{~V}, 24$-Pin Wide SO Package, SMD	224-0505	1
U39	Integrated Circuit, N74F74D, Dual Positive Edge Triggered D-Type Flip-Flop, 14-Pin SO, SMD	224-0074	1
U40, U41	Integrated Circuit, LT1491CS, Op Amp, Quad Micropower Rail-To-Rail Input and Output, 14-Pin, SO Package, SMD	224-1491	2
U10A thru	Integrated Circuit, 4N33, Optical Isolator, NPN Photo	229-0033	8
U17A	Transistor/Infared Emitting Diode Type, 1500V Isolation, Response: 30 kHz Maximum, Current: 50 mA Maximum, 6 -Pin DIP		
U10B thru	Integrated Circuit, 4N33, Optical Isolator, NPN Photo	229-0033	8
U17B	Transistor/Infared Emitting Diode Type, 1500V Isolation, Response: 30 kHz Maximum, Current: 50 mA Maximum, 6-Pin DI		
$\begin{aligned} & \text { U19A thru } \\ & \text { U22A } \end{aligned}$	Integrated Circuit, H11AA1, AC Input Opto-Isolator, 6-Pin DIP	229-0111	4
$\begin{aligned} & \text { U19B thru } \\ & \text { U22B, U25B } \end{aligned}$	Integrated Circuit, H11AA1, AC Input Opto-Isolator, 6-Pin DIP	229-0111	5
U24A	Integrated Circuit, 4N33, Optical Isolator, NPN Photo Transistor/Infared Emitting Diode Type, 1500V Isolation, Response: 30 kHz Maximum, Current: 50 mA Maximum, 6-Pin DI	229-0033	1
U25A	Integrated Circuit, H11AA1, AC Input Opto-Isolator, 6-Pin DIP	229-0111	1
U26A thru U28A	Integrated Circuit, 4N33, Optical Isolator, NPN Photo Transistor/Infared Emitting Diode Type, 1500V Isolation, Response: 30 kHz Maximum, Current: 50 mA Maximum, 6 -Pin DIP	229-0033	3
U24B, U26B thru U28B	Integrated Circuit, 4N33, Optical Isolator, NPN Photo Transistor/Infared Emitting Diode Type, 1500V Isolation, Response: 30 kHz Maximum, Current: 50 mA Maximum, 6-Pin DI	229-0033	4
XBT1	Holder, Battery For CR-2032, SMD	415-2032	1
XU5, XU6	Socket, 20-Pin, DIP, SMD	431-2000	2
XU5	Software, FM Control Programmed Kit	979-0436-005	1
XU6	Software, FM Control Programmed Kit	979-0436-006	1
XU10 thru XU17	Socket, 14-Pin, DIP, SMD	431-1400	8
XU18	Socket, 68-Pin, PLCC, SMD	431-6800	1
$\begin{aligned} & \text { XU19 thru } \\ & \text { XU22 } \end{aligned}$	Socket, 14-Pin, DIP, SMD	431-1400	4
$\begin{aligned} & \text { XU24 thru } \\ & \text { XU28 } \end{aligned}$	Socket, 14-Pin, DIP, SMD	431-1400	5

TABLE 3-3. MAIN BOARD CONTROLLER CIRCUIT BOARD ASSEMBLY - 919-0436 (Sheet 4 of 4)

REF. DES.	DESCRIPTION	PART NO.	QTY.
---	Blank, Main Board, Controller Circuit Board	$519-0436$	1

TABLE 3-4. FRONT PANEL CONTROLLER CIRCUIT BOARD ASSEMBLY - 919-0437

REF. DES.	DESCRIPTION	PART NO.	QTY.
C2	Capacitor, Mica, $390 \mathrm{pF} \pm 5 \%, 100 \mathrm{~V}$	042-3922	1
C3	Capacitor, Ceramic, Monolythic, . $1 \mathrm{uF} \pm 20 \%$, 50 V	003-1054	1
DS1 thru DS4	LED, LN322GP, Green, Diffused Chimney	320-0322	4
DS5 thru DS8	LED, LN222RP, Red Diffused Chimney, P424, $70 \mathrm{~mW}, 20 \mathrm{~mA}$, 4V	320-0037	4
DS9	LED, LN322GP, Green, Diffused Chimney	320-0322	1
J2	Connector Header, 40-Pin	417-0173	1
J12	Receptacle, Male, 8-Pin In-Line, Right Angle	417-0080-001	1
L1	RF Choke, $4.7 \mathrm{uH} \pm 10 \%, 430 \mathrm{~mA}$, DC Resistance: 0.55 Ohms, 0.43 Amperes Maximum, Resonant at 115 MHz	360-0022	1
R1, R2	Resistor, 10 Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-1021	2
R3	Resistor, 17.8 Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-1782	1
R4	Resistor, 10 Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-1021	1
R5	Resistor, 17.8 Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-1782	1
R6	Resistor, $10 \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	103-1021	1
R7	Resistor, $17.8 \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	103-1782	1
R8	Resistor, 10 Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-1021	1
R9	Resistor, $267 \mathrm{Ohm} \pm 1 \%$, 1/4W	103-2673	1
R10	Resistor, 10 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	100-1051	1
R11 thru R14	Resistor, $536 \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	103-5363	4
R15 thru R18	Resistor, $150 \mathrm{Ohm} \pm 1 \%$, 1/4W	100-1531	4
R19 thru R27	Resistor, $10 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	100-1051	9
R28	Resistor, $267 \mathrm{Ohm} \pm 1 \%$, 1/4W	103-2673	1
R29	Resistor, $10 \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	103-1021	1
R30	Resistor, $10 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	100-1051	1
R31	Resistor, $10 \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	103-1021	1
R32	Resistor, $10 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	100-1051	1
R33	Resistor, $536 \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	103-5363	1
R34	Resistor, $150 \mathrm{Ohm} \pm 1 \%$, 1/4W	100-1531	1
R35	Resistor, $442 \mathrm{Ohm} \pm 1 \%$, 1/4W	103-4423	1
SW1	Switch, TL-1251-G, Pushbutton, Momentary, LED Illuminated, Green	340-0140	1
SW2	Switch, TL-1251-Y, Pushbutton, Momentary, LED Illuminated, Yellow	340-0139	1
SW3	Switch, TL-1251-R, Pushbutton, Momentary, LED Illuminated, Red	340-0143	1
SW4	Switch, TL-1251-G, Pushbutton, Momentary, LED Illuminated, Green	340-0140	1
SW5, SW6	Switch, TL-1251-Y, Pushbutton, Momentary, LED Illuminated, Yellow	340-0139	2
SW7	Switch, TL-1251-G, Pushbutton, Momentary, LED Illuminated, Green	340-0140	1
SW8	Switch, TL-1251-R, Pushbutton, Momentary, LED Illuminated, Red	340-0143	1
SW9	Switch, TL-1251-Y, Pushbutton, Momentary, LED Illuminated, Yellow	340-0139	1
SW10	Switch, TL-1251-R, Pushbutton, Momentary, LED Illuminated, Red	340-0143	1
SW11, SW12	Switch, TL-1251-Y, Pushbutton, Momentary, LED Illuminated, Yellow	340-0139	2
--	Blank, Front Panel Controller Circuit Board	519-0437	1

TABLE 3-5. I/O BOARD CONTROLLER CIRCUIT BOARD ASSEMBLY - 919-0438
(Sheet 1 of 2)

REF. DES.	DESCRIPTION	PART NO.	QTY.
C1	Capacitor, Polyester, 0.0022 uF $\pm 10 \%$, 100V	031-2033	1
C2 thru C12	Capacitor, Monolythic Ceramic, $0.1 \mathrm{uF} \pm 20 \%$, 50 V	003-1054	11
C13	Capacitor, Polyester, 0.0022 uF $\pm 10 \%$, 100V	031-2033	1
C14 thru C33	Capacitor, Monolythic Ceramic, $0.1 \mathrm{uF} \pm 20 \%$, 50 V	003-1054	19
C34, C35	Capacitor, Polyester, 0.0022 uF $\pm 10 \%$, 100V	031-2033	2
C36	Capacitor, Monolythic Ceramic, $0.1 \mathrm{uF} \pm 20 \%$, 50 V	003-1054	1
C37	Capacitor, Polyester, 0.0022 uF $\pm 10 \%$, 100V	031-2033	1
C38 thru C45	Capacitor, Monolythic Ceramic, $0.1 \mathrm{uF} \pm 20 \%, 50 \mathrm{~V}$	003-1054	8
C46, C47	Capacitor, Polyester, 0.0022 uF $\pm 10 \%, 100 \mathrm{~V}$	031-2033	2
C48 thru C52	Capacitor, Mica, $390 \mathrm{pF} \pm 5 \%$, 100V	042-3922	5
C53 thru C57	Capacitor, Monolythic Ceramic, $0.1 \mathrm{uF} \pm 20 \%, 50 \mathrm{~V}$	003-1054	5
C58	Capacitor, Mica, $390 \mathrm{pF} \pm 5 \%$, 100V	042-3922	1
C59	Capacitor, Monolythic Ceramic, $0.1 \mathrm{uF} \pm 20 \%$, 50 V	003-1054	1
C60	Capacitor, Polyester, 0.0022 uF $\pm 10 \%$, 100V	031-2033	1
C61 thru C69	Capacitor, Monolythic Ceramic, $0.1 \mathrm{uF} \pm 20 \%$, 50 V	003-1054	9
C70	Capacitor, Polyester, 0.0022 uF $\pm 10 \%$, 100V	031-2033	1
$\begin{aligned} & \text { C71, C72, C75 } \\ & \text { thru C83 } \end{aligned}$	Capacitor, Monolythic Ceramic, $0.1 \mathrm{uF} \pm 20 \%, 50 \mathrm{~V}$	003-1054	11
D1 thru D4 $70 \mathrm{~V}, 15 \mathrm{~mA}$	Diode, HP5082-2800, High Voltage, Schottky Barrier Type,	201-2800	4
D5 thru D48	Bidirectional Zener Transient Voltage Suppressor, P6KE15CA-RL, +/-15V	201-0015	44
D51 thru D73	Bidirectional Zener Transient Voltage Suppressor, P6KE15CA-RL, $+/-15 \mathrm{~V}$	201-0015	23
D74, D75	Bidirectional Zener Transient Voltage Suppressor, P6KE27CA-RL, +/-27V	201-0027	2
D76, D77	Bidirectional Zener Transient Voltage Suppressor, P6KE15CA-RL, $+/-15 \mathrm{~V}$	201-0015	2
FL1 thru FL44 FL47 thru FL6	Filter, EMI, $10,000 \mathrm{pF}, 3$-Pin	411-0001	65
J1	Connector, DB37F, Vertical, PCB	417-3703	1
J2, J3	Receptacle, 25-Pin	417-2500	2
J5, J6	Connector, DB9M, Vertical, PCB	417-9001	2
J7	Receptacle, 25-Pin	417-2500	1
J11, J12	Header, 50-Pin, Right Angle, . 100 Centers	417-5017	2
L1 thru L6	RF Choke, $4.7 \mathrm{uH} \pm 10 \%, 430 \mathrm{~mA}$, DC Resistance: 0.55 Ohms, 0.43 Amperes Maximum, Resonant at 115 MHz	360-0022	6
R1	Resistor, $10 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	100-1051	1
R2 thru R6	Resistor, $100 \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	100-1031	5
R7	Resistor, 51.1 Ohm $\pm 1 \%$, 1/4W	103-5112	1
R8, R9	Resistor, $100 \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	100-1031	2
R10, R11	Resistor, 51.1 Ohm $\pm 1 \%$, 1/4W	103-5112	2
R12	Resistor, 100 Ohm $\pm 1 \%$, 1/4W	100-1031	1
R14 thru R21	Resistor, 51.1 Ohm $\pm 1 \%$, 1/4W	103-5112	8
R24 thru R31	Resistor, 51.1 Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-5112	8
R34	Resistor, 10 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	100-1051	1
R37 thru R39	Resistor, 51.1 Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	103-5112	3
R45	Resistor, $56 \mathrm{Ohm} \pm 5 \%$, 2W	130-5621	1
R46 thru R48	Resistor, 51.1 Ohm $\pm 1 \%$, 1/4W	103-5112	3
R54	Resistor, 475 Ohm $\pm 1 \%$, 1/4W	103-4753	1
R55, R56	Resistor, $10 \mathrm{k} \mathrm{Ohm} \pm 1 \%$, 1/4W	100-1051	2
R57	Resistor, 475 Ohm $\pm 1 \%$, 1/4W	103-4753	1
R58	Resistor, $56 \mathrm{Ohm} \pm 5 \%, 2 \mathrm{~W}$	130-5621	1
R60	Resistor, 21 k Ohm $\pm 1 \%$, 1/4W	103-2105	1

TABLE 3-5. I/O BOARD CONTROLLER CIRCUIT BOARD ASSEMBLY - 919-0438
(Sheet 2 of 2)

REF. DES.	DESCRIPTION	PART NO.	QTY.
R64 thru R66	Resistor, $51.1 \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$		
R67	Resistor, $8.66 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	$103-5112$	3
R68	Resistor, $4.32 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	$100-8641$	1
R73, R75	Resistor, $51.1 \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	$103-4324$	1
R76	Resistor, $10 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	$103-5112$	2
R77	Resistor, $10 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	$100-1051$	1
R79	Resistor, $4.32 \mathrm{k} \mathrm{Ohm} \pm 1 \%, 1 / 4 \mathrm{~W}$	$103-4324$	1
R82	Resistor, 8.66 k Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	$100-8641$	1
R90 thru R92	Resistor, 51.1 Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	$103-5112$	1
R94 thru R98	Resistor, 51.1 Ohm $\pm 1 \%, 1 / 4 \mathrm{~W}$	$103-5112$	3
---	Blank, I/O Board Controller Circuit Board	$519-0438$	5
			1

TABLE 3-6. HARNESS, FM DIGITAL CONTROLLER ASSEMBLY - 949-0423

REF. DES.	DESCRIPTION	PART NO.	QTY.
---	Connector, Male, 9-Pin	$417-0181$	
----	Socket, Connector, 50-Pin	$417-0228$	1
----	Housing, SL-156, 3 Position	$417-0306$	4
---	Plug, Housing, 2-Pin	$417-0499$	1
---	Housing, SL-156, 6 Position	$417-0606$	3
----	Pins, Crimp Type	$417-8766$	1
----	Connector Housing, 6-Pin	$418-0670$	6
----	Plug, 40-Pin Dual In-Line	$418-4001$	1
----	Varistor, V250LA20A GE, Model Size 14	$140-0008$	2
----	Socket, Connector, 641294-1 Amp	$417-0053$	2
---	Socket, Connector, 10-Pin	$417-1003$	6

SECTION IV DRAWINGS

4-1. INTRODUCTION.

4-2. This section provides assembly drawings, schematic diagrams, and wiring diagrams as indexed below for the FM-25T/FM-30T/FM-35T transmitter controller.

FIGURE	TITLE	NUMBER
$4-1$	OVERALL SCHEMATIC, TRANSMITTER CONTROLLER	SB959-0430
$4-2$	SCHEMATIC DIAGRAM, EMI FILTER CIRCUIT BOARD	SB919-0438
$4-3$	ASSEMBLY DIAGRAM, EMI FILTER CIRCUIT BOARD	AC919-0438
$4-4$	SCHEMATIC DIAGRAM, MAIN CIRCUIT BOARD	SB919-0436
$4-5$	ASSEMBLY DIAGRAM, MAIN CIRCUIT BOARD	AC919-0436
$4-6$	SCHEMATIC DIAGRAM, FRONT PANEL CIRCUIT BOARD	SB919-0437
$4-7$	ASSEMBLY DIAGRAM, FRONT PANEL CIRCUIT BOARD	AC919-0437
$4-8$	ASSEMBLY DIAGRAM, TRANSMITTER CONTROLLER	$597-0220-429$
		$/-430$
		$/-431$
		$/-432$

COPYRIGHT © 1997 BROADCAST ELECTRONICS, INC

FIGURE 4-8. ASSEMBLY DIAGRAM, TRANSMITTER CONTROLLER (Sheet 1 of 4)

COPYRIGHT © 1997 BROADCAST ELECTRONICS, INC

FIGURE 4-8. ASSEMBLY DIAGRAM, TRANSMITTER CONTROLLER (Sheet 2 of 4)

FIGURE 4-8. ASSEMBLY DIAGRAM, TRANSMITTER CONTROLLER (Sheet 3 of 4)

FIGURE 4-8. ASSEMBLY DIAGRAM, TRANSMITTER CONTROLLER (Sheet 4 of 4)

[^0]: Thanks to William Barkley, William Orr, William Sain, and Bob Tornoe, all

[^1]: This manual is the proprietary property of Pioneer Magnetics Inc. and is submitted under a confidential relationship for a specific stated purpose and shall not be disclosed to any unauthorized person, be incorporated in other projects, be reproduced in whole or part, or become the basis for a manufactured product without prior written consent from Pioneer Magnetics Inc.

[^2]: This manual is the proprietary property of Pioneer Magnetics Inc. and is submitted under a confidential relationship for a specific stated purpose and shall not be disclosed to any unauthorized person, be incorporated in other projects, be reproduced in whole or part, or become the basis for a manufactured product without prior written consent from Pioneer Magnetics Inc.

[^3]: This manual is the proprietary property of Pioneer Magnetics Inc. and is submitted under a confidential relationship for a specific stated purpose and shall not be disclosed to any unauthorized person, be incorporated in other projects, be reproduced in whole or part, or become the basis for a manufactured product without prior written consent from Pioneer Magnetics Inc.

[^4]: This manual is the proprietary property of Pioneer Magnetics Inc. and is submitted under a confidential relationship for a specific stated purpose and shall not be disclosed to any unauthorized person, be incorporated in other projects, be reproduced in whole or part, or become the basis for a manufactured product without prior written consent from Pioneer Magnetics inc.

[^5]: This manual is the proprietary property of Pioneer Magnetics Inc. and is submitted under a confidential relationship for a specific stated purpose and shall not be disclosed to any unauthorized person, be incorporated in other projects, be reproduced in whole or part, or become the basis for a manufactured product without prior written consent from Pioneer Magnetics Inc.

[^6]: This manual is the proprietary property of Pioneer Magnetics Inc. and is submitted under a confidential relationship for a specific stated purpose and shall not be disclosed to any unauthorized person, be incorporated in other projects, be reproduced in whole or part, or become the basis for a manufactured product without prior written consent from Pioneer Magnetics Inc.

[^7]: This manual is the proprietary property of Pioneer Magnetics Inc. and is submitted under a confidential relationship for a specific stated purpose and shall not be disclosed to any unauthorized person, be incorporated in other projects, be reproduced in whole or part, or become the basis for a manufactured product without prior written consent from Pioneer Magnetics Inc.

[^8]: This manual is the proprietary property of Pioneer Magnetics Inc. and is submitted under a confidential relationship for a specific stated purpose and shall not be disclosed to any unauthorized person, be incorporated in other projects, be reproduced in whole or part, or become the basis for a manufactured product without prior written consent from Pioneer Magnetics Inc.

[^9]: This manual is the proprietary property of Pioneer Magnetics Inc. and is submitted under a confidential relationship for a specific stated purpose and shat not be disclosed to any unauthorized person, be incorporated in other projects, be reproduced in whole or part, or become the basis for a manufactured product without prior written consent from Pioneer Magnetics Inc

[^10]: This manual is the proprietary property of Pioneer Magnetics Inc. and is submitted under a confidential relationship for a specific stated purpose and shall not be disclosed to any unauthorized person, be incorporated in other projects, be reproduced in whole or part, or become the basis for a manufactured product without prior written consent from Pioneer Magnetics Inc.

[^11]: This manual is the proprietary property of Pioneer Magnetics Inc. and is submitted under a confidential relationship for a specific stated purpose and shall not be disclosed to any unauthorized person, be incorporated in other projects, be reproduced in whole or part, or become the basis for a manufactured product without prior written consent from Pioneer Magnetics Inc.

[^12]: This manual is the proprietary property of Pioneer Magnetics Inc. and is submitted under a confidential relationship for a specific stated purpose and shall not be disclosed to any unauthorized person, be incorporated in other projects, be reproduced in whole or part, or become the basis for a manufactured product without prior written consent from Pioneer Magnetics Inc.

[^13]: This manual is the proprietary property of Pioneer Magnetics Inc. and is submitted under a confidential relationship for a specific stated purpose and shall not be disclosed to any unauthorized person, be incorporated in other projects, be reproduced in whole or part, or become the basis for a manufactured product without prior written consent from Pioneer Magnetics Inc.

[^14]: This manual is the proprietary property of Pioneer Magnetics Inc. and is submitted under a confidential relationship for a specific stated purpose and shall not be disclosed to any unauthorized person, be incorporated in other projects, be reproduced in whole or part, or become the basis for a manufactured product without prior written consent from Pioneer Magnetics Inc.

